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INDECOMPOSABLE PROJECTIVE

REPRESENTATIONS OF DIRECT PRODUCTS

OF FINITE GROUPS OVER A RING

OF FORMAL POWER SERIES

Leonid F. Barannyk, Dariusz Klein

Institute of Mathematics

Pomeranian University of Sªupsk

Arciszewskiego 22b, 76-200 Sªupsk, Poland

e-mail: barannyk@apsl.edu.pl, klein@apsl.edu.pl

Abstract. Let F be a �eld of characteristic p > 0, S = F [[X ]] the ring of formal

power series in the indeterminateX with coe�cients in the �eld F , F ∗ the multiplica-

tive group of F , G = Gp×B a �nite group, where Gp is a p-group and B is a p′-group.
We give necessary and su�cient conditions for G and F under which there exists a co-

cycle λ ∈ Z2(G,F ∗) such that every indecomposable projective S-representation of

G with the cocycle λ is the outer tensor product of an indecomposable projective

S-representation of Gp and an irreducible projective S-representation of B.

1. Introduction

Let F be a �eld of characteristic p > 0 and G = Gp ×B, where Gp is a Sylow

p-subgroup. Blau [6] and Gudyvok [10, 11] proved that every �nitely gen-

erated FG-module is the outer tensor product V#W of an indecomposable

FGp-module V and an irreducible FB-module W if and only if either Gp is

cyclic or F is a splitting �eld for B. Gudyvok [12, 13] also investigated a sim-

ilar problem for group rings KG, where K is a complete discrete valuation

ring. In particular, he proved that if K is of characteristic p > 0 and T is

the quotient �eld of K, then every indecomposable KG-module is of the form

V#W if and only if either |Gp| = 2 or T is a splitting �eld for B. In the paper

[2], the results of Blau and Gudyvok were generalized to the twisted group

rings SλG, where G = Gp × B, S = F or S is a complete discrete valuation

ring of characteristic p > 0.
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In this paper we continue the study of indecomposable projective represen-

tations of G = Gp ×B over the ring S = F [[X]] as begun in [2].

Let us present the main results of the paper. We assume that F is a �eld

of characteristic p > 0, S∗ the unit group of S, |Gp| �= 1, |B| �= 1, and if

Gp is non-Abelian, then F contains a primitive qth root of 1 for every prime

q | |B| such that p | (q− 1). Given a cocycle λ : G×G→ S∗ in Z2(G,S∗), we
denote by SλG the twisted group ring of the group G over the ring S with the

2-cocycle λ. By an SλG-module we mean a �nitely generated left SλG-module

which is S-free. Given µ ∈ Z2(Gp, S
∗), the kernel Ker(µ) of µ is the union of

all cyclic subgroups 〈 g 〉 of Gp such that the restriction of µ to 〈 g 〉× 〈 g 〉 is
a coboundary. We recall from [4, p. 268] that G′

p ⊂ Ker(µ), Ker(µ) is a normal

subgroup of Gp and the restriction of µ to Ker(µ) × Ker(µ) is a coboundary

(see also [3, p. 197] for a simple proof). Up to cohomology in Z2(Gp, S
∗),

we have µg,a = µa,g = 1 for all g ∈ Gp and a ∈ Ker(µ). In what follows, we

assume that every cocycle µ ∈ Z2(Gp, S
∗) under consideration satis�es this

condition. If H is a subgroup of G, then the restriction of λ ∈ Z2(G,S∗) to
H × H will also be denoted by λ. In this case, SλH is a subring of SλG.
A group G is of symmetric type if it decomposes into a direct product of two

isomorphic groups. Denote

i(F ) =
{
t if [F : F p] = pt,
∞ if [F : F p] =∞.

Let G = Gp × B, µ ∈ Z2(Gp, S
∗) and ν ∈ Z2(B,S∗). Then the map

µ× ν : G×G→ S∗ de�ned by

(µ× ν)x1b1,x2b2 = µx1,x2 · νb1,b2

for all x1, x2 ∈ Gp, b1, b2 ∈ B belongs to Z2(G,S∗). Every cocycle λ ∈
Z2(G,S∗) is cohomologous to µ×ν, where µ is the restriction of λ to Gp×Gp

and ν is the restriction of λ to B × B. From now on, we suppose that each

cocycle λ ∈ Z2(G,S∗) under consideration satis�es the condition λ = µ× ν.
For any λ = µ × ν ∈ Z2(G,S∗), we have SλG ∼= SµGp ⊗S S

νB. If every

indecomposable SλG-module is isomorphic to the outer tensor product V#W ,

where V is an indecomposable SµGp-module and W is an irreducible SνB-
module, then we will say that the ring SλG is of OTP representation type.

Let Ω be a subgroup of S∗. We say that a group G = Gp × B is of OTP

projective (S,Ω)-representation type if there exists a cocycle λ ∈ Z2(G,Ω)
such that the ring SλG is of OTP representation type. A group G = Gp ×B
is de�ned to be of purely OTP projective (S,Ω)-representation type if SλG is

of OTP representation type for any λ ∈ Z2(G,Ω). If Ω = S∗, then instead of

�(S,Ω)-representation type� we write �S-representation type�.
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In Section 3, we characterize twisted group rings of OTP representation

type. Let G = Gp × B, µ ∈ Z2(Gp, S
∗), ν ∈ Z2(B,S∗), λ = µ × ν and

H = Ker(µ). In Theorem 1, we prove that if |H| > 2, then the ring SλG is of

OTP representation type if and only if F is a splitting �eld for the F -algebra
SνB/XSνB. Assume that |G′

p| �= 2, µ ∈ Z2(Gp, F
∗), ν ∈ Z2(B,S∗) and

λ = µ×ν. In Proposition 3, we show that SλG is of OTP representation type

if and only if one of the following conditions is satis�ed:

(i) FµGp is a �eld;

(ii) p = 2, |G′
2| = 1 and 2 dimF (FµG2/ radFµG2) = |G2|;

(iii) F is a splitting �eld for the F -algebra SνB/XSνB.

In Section 4, we study the groups of OTP projective representation type.

Let G = Gp × B, |G′
p| �= 2 and s be the number of invariants of Gp/G

′
p. In

Theorem 2, we prove that G is of OTP projective (S,F ∗)-representation type

if and only if one of the following conditions is satis�ed:

(i) |G′
p| = 1 and s ≤ i(F );

(ii) p = 2, |G′
2| = 1, s = i(F ) + 1 and G2 has at least one invariant

equal to 2;
(iii) F is a splitting �eld for F σB for some σ ∈ Z2(B,F ∗).

Let G = Gp×B be an Abelian group and s the number of invariants of Gp. In

Proposition 5, we establish that G is of OTP projective (S,F ∗)-representation
type if and only if one of the following conditions is satis�ed:

(i) s ≤ i(F );
(ii) p = 2, s = i(F ) + 1 and G2 has at least one invariant equal to 2;
(iii) B has a subgroup H such that B/H is of symmetric type and F

contains a primitive mth root of 1, where m = max{exp(B/H), expH}.
In Section 5, we show in Theorem 3 that G = Gp × B is of purely OTP

projective S-representation type if and only if |Gp| = 2 or F is a splitting �eld

for any F νB. Corollary to Theorem 3 asserts that if G is a nilpotent group,

then G is of purely OTP projective S-representation type if and only if one of

the following conditions is satis�ed:

(i) |Gp| = 2;
(ii) F = F q and F contains a primitive qth root of 1 for every prime q | |B|.

2. Preliminaries

Throughout this paper, we use the following notations: p ≥ 2 is a prime;

F is a �eld of characteristic p > 0; S = F [[X]] is the ring of formal power

series in the indeterminate X with coe�cients in the �eld F ; P = XS is unique

maximal ideal of S; F ∗ is the multiplicative group of F ; F q = {αq : α ∈ F};
S∗ is the unit group of S; G = Gp×B is a �nite group, where Gp is a p-group
and B is a p′-group; H ′ is the commutant of a group H, e is the identity
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element of H, |h| is the order of h ∈ H; socA is the socle of an Abelian

group A and expA is the exponent of A. We suppose that |Gp| > 1 and

|B| > 1. Given a subgroup Ω of S∗, we denote by Z2(H,Ω) the group of all

Ω-valued normalized 2-cocycles of the group H, where we assume that H acts

trivially on Ω. An S-basis {uh : h ∈ H} of SλH satisfying uaub = λa,buab
for all a, b ∈ H is called natural (corresponding to λ ∈ Z2(H,S∗)). Given an

SλH-module V , we write EndSλH(V ) for the ring of all SλH-endomorphisms

of V , radEndSλH(V ) for the Jacobson radical of EndSλH(V ) and EndSλH(V )
for the quotient ring

EndSλH(V )/ rad EndSλH(V ).

Moreover, we denote by S̃λH the F -algebra SλH/XSλH and by Ṽ the factor

module V/XV . Given λ ∈ Z2(H,F ∗), F λH denotes the twisted group algebra

of H over F and F λH the quotient algebra of F λH by the radical radF λH.

We identify an element a+P , a ∈ F , of the �eld S̄ = S/P with the element a.

Lemma 1. [8, p.125] Let H be a �nite group, λ ∈ Z2(H,S∗) and V an SλH-

module. Then V is indecomposable if and only if EndSλH(V ) is a skew�eld.

Lemma 2. Let H be a �nite p-group, D a subgroup of H, λ ∈ Z2(H,S∗) and
M an indecomposable SλD-module. Assume that EndSλD(M) is isomorphic

to a �eld K, K ⊃ F and one of the following conditions is satis�ed:

(i) H is Abelian;

(ii) [s(K) : F ] is not divisible by p, where s(K) is the separable closure of

F in K.

Then MH := SλH ⊗SλD M is an indecomposable SλH-module and

EndSλH(MH)

is isomorphic to a �eld that is a �nite purely inseparable extension of the

�eld K.

The proof is similar to that of Lemma 2.2 [2, p.540]. It uses the same idea as

in Theorem 8 of [9].

Lemma 3. Let K be a �nite separable extension of the �eld F and H a �nite

p-group. If |H| > 2, then there exists an indecomposable SH-module V such

that EndSH(V ) is isomorphic to K.

P r o o f. Let K = F (θ), f(t) be the monic minimal polynomial of θ over F
and Γ the companion matrix of f(t). Assume that either H is cyclic of order
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|H| > 2 or H is a group of type (2, 2). Let H = 〈 a 〉 and V be the underlying

SH-module of the representation

a �→

 E XE Γ
0 E XE
0 0 E


of H, where E is the identity matrix of order n = deg f(t). Then,

by [13, pp. 70�71], EndSH(V ) ∼= K. If H = 〈 a 〉× 〈 b 〉 is a group of type

(2, 2), then as V we take the underlying SH-module of the representation

a �→
(
E E
0 E

)
, b �→

(
E Γ
0 E

)
.

By [13, p. 71], we have EndSH(V ) ∼= K. �
Lemma 4. Let p = 2, [F : F 2] = 2, H be a 2-group such that |H| �= 8 and

|H ′| = 2. Assume also that K is a �nite separable extension of the �eld F and

[K : F ] is not divisible by 2. Then, for any λ ∈ Z2(H,F ∗), there exists an

indecomposable SλH-module V such that EndSλH(V ) is isomorphic to a �eld

that is a �nite purely inseparable extension of the �eld K.

P r o o f. Let H ′ = 〈 c 〉, s be the number of invariants of the Abelian group

H/H ′, D the subgroup of H such that H ′ ⊂ D and D/H ′ = soc(H/H ′). We

have

SλD/SλD(uc − ue) ∼= Sλ̄D̄,

where D̄ = D/H ′ and λ̄xH′,yH′ = λx,y for all x, y ∈ D. Assume s > 2. Since
i(F ) = 1,

F λ̄D̄ ∼= F λ̄D̄1 ⊗F FD̄2,

where D̄ = D̄1 × D̄2 and |D̄2| ≥ 4. It follows that Sλ̄D̄ ∼= Sλ̄D̄1 ⊗S SD̄2. By

Lemmas 2 and 3, there exists an indecomposable Sλ̄D̄-module V such that

EndSλ̄D̄(V )

is a �nite purely inseparable extension of the �eld K. The module V is also

an SλD-module. In view of Lemma 2, V H is an indecomposable SλH-module

and

EndSλH(V H)

is a �nite purely inseparable extension of K.

Now we consider the case s = 2. Since |H| > 8, then D is Abelian. Let

D = 〈 a 〉× 〈 b 〉, where a2 = c and b2 = e. Then

SλD =
⊕
i,j,k

Suiau
j
bu

k
c ,
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where

u2
a = αuc, u2

b = βue, u2
c = ue

and α, β ∈ F ∗. If α ∈ F 2, then S[ua] is the group ring of the group 〈 a 〉 over the
ring S. If β ∈ F 2 then SλD contains the group ring SQ, where Q = 〈 c 〉× 〈 b 〉.
Assume that α �∈ F 2 and β �∈ F 2. Since i(F ) = 1, α−1 = δ20 + δ21β for some

δ0, δ1 ∈ F . Let v = ua(δ0ue + δ1ub). Then v2 = αuc · α−1ue = uc.

If D = 〈 a 〉× 〈 b 〉× 〈 c 〉 is of type (2, 2, 2), then SλD contains SQ, where
Q is a group of type (2, 2).

Applying Lemmas 2 and 3, we �nish the proof. �

Lemma 5. Let G = Gp × B and λ ∈ Z2(G,S∗). The ring SλG is of OTP

representation type if and only if the outer tensor product of any indecom-

posable SλGp-module and any irreducible SλB-module is an indecomposable

SλG-module.

The proof is similar to that of the corresponding fact for a group ring

(see [6, p. 41], [13, p. 68]).

Let B be a �nite p′-group and λ ∈ Z2(B,S∗). We denote by S̃λB the

F -algebra SλB/XSλB. For y ∈ SλB, let ỹ denote y+XSλB. The F -algebra

S̃λB is separable. By Theorem 6.8 [8, p. 124], if

S̃λB = S̃λBε1 ⊕ . . .⊕ S̃λBεn

is a decomposition into minimal left ideals, then there exists a decomposition

SλB = SλBe1 ⊕ . . .⊕ SλBen,

where εi is an idempotent of S̃λB, ei is an idempotent of SλB and ẽi = εi
for every i ∈ {1, . . . , n}. Each ideal SλBei is an irreducible SλB-module.

By Theorem 76.8 [7, p. 532] and Corollary 76.15 [7, p. 536], any irreducible

SλB-module is isomorphic to SλBej for some j ∈ {1, . . . , n}. Moreover, by

Proposition 5.22 [8, p. 112] and Theorem 76.8 [7, p. 532],

EndSλB S
λBej ∼= EndSλB S

λBej/X EndSλB S
λBej ∼= End

S̃λB
S̃λBεj .

Lemma 6. Let G = Gp × B and λ ∈ Z2(G,S∗). If V is an indecomposable

SλGp-module and W is an irreducible SλB-module, then

EndSλG(V#W ) ∼= EndSλGp
(V )⊗F EndSλB(W ).
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P r o o f. By Proposition 7.6 [14, p. 652],

EndSλG(V#W ) ∼= EndSλGp
(V )⊗S EndSλB(W ).

Applying Proposition 2 [6, p. 39], we obtain

EndSλG(V#W ) ∼=
(
EndSλGp

(V )⊗F EndSλB(W )
)
/R,

where R := rad
(
EndSλG(V )⊗F EndSλB(W )

)
. Since EndSλB(W ) is a sepa-

rable F -algebra, then

EndSλGp
(V )⊗F EndSλB(W )

is a semisimple algebra. Hence R = 0 and the result follows. �

Lemma 7. Let G = Gp × B and λ ∈ Z2(G,S∗). If F is a splitting �eld for

the algebra S̃λB, then SλG is of OTP representation type.

P r o o f. Let W be an irreducible SλB-module. Then

EndSλB W
∼= End

S̃λB
W̃ ∼= F,

where W̃ =W/XW . By Lemmas 1 and 6, V#W is an indecomposable SλG-
module for every indecomposable SλGp-module V . By Lemma 5, SλG is of

OTP representation type. �

Lemma 8. Let B be a �nite p′-group. Assume that F contains a primitive qth

root of 1 for every prime q | |B| such that p | (q− 1). Then, for any F -algebra
S̃λB, there exists a splitting �eld K such that [K : F ] is not divisible by p.

P r o o f. See [2, p. 548]. �

Proposition 1. Let S = F [[X]], T be the quotient �eld of S, B a �nite p′-
group and λ ∈ Z2(B,S∗). The �eld T is a splitting �eld for the algebra T λB

if and only if F is a splitting �eld for the F -algebra S̃λB.

P r o o f. Assume that T is a splitting �eld for T λB. Denote by W an

irreducible SλB-module. Since T ⊗S W is an absolutely irreducible T λB-
module, by Schur's Lemma, EndSλB(W ) ∼= S. It follows that

End
S̃λB

(W̃ ) ∼= F. (1)

Hence F is a splitting �eld for S̃λB.
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Now suppose that F is a splitting �eld for S̃λB = SλB/XSλB. Then

there exists an isomorphism (1) for any irreducible SλB-module W . It fol-

lows, by Theorem 76.8 [7, p. 532] and Corollary 76.16 [7, p. 536], that

EndSλB(W ) ∼= S, therefore EndTλB(T ⊗S W ) ∼= T . Hence T is a splitting

�eld for T λB. �

3. Twisted group rings of OTP representation type

In this Section, S = F [[X]] and G = Gp×B, where Gp is a Sylow p-subgroup
of G, |Gp| �= 1 and |B| �= 1. We assume that if Gp is non-Abelian, then F
contains a primitive qth root of 1 for every prime q | |B| such that p | (q − 1).

Theorem 1. Let G = Gp×B, µ ∈ Z2(Gp, S
∗), ν ∈ Z2(B,S∗), λ = µ×ν and

H = Ker(µ). Assume that |H| > 2. The ring SλG is of OTP representation

type if and only if F is a splitting �eld for S̃νB.

P r o o f. If F is a splitting �eld for S̃νB, then, by Lemma 7, the ring SλG is

of OTP representation type.

Assume now that F is not a splitting �eld for S̃νB. There exists an irre-

ducible SνB-module W such that D := EndSλB(W ) is a division F -algebra
of dimension greater than one. By [4, p. 268], the restriction of µ to H ×H
is a coboundary and G′

p ⊂ H. Suppose that Gp is non-Abelian. Then, by

Lemma 8, there exists a splitting �eld K for S̃νB, which is a �nite separable

extension of the �eld F and satis�es [K : F ] �≡ 0(mod p). In view of Lemma 3,

there is an indecomposable SH-moduleM such that EndSH(M) is isomorphic

to K. According to Lemma 2, we conclude that MGp is an indecomposable

SµGp-module and

EndSµGp(MGp)

is isomorphic to a �eld L that is a �nite purely inseparable extension of the

�eld K. Since L is a splitting �eld for D, L⊗F D is not a skew�eld. Hence, by

Lemmas 1 and 6, MGp#W is not an indecomposable SλG-module. In view

of Lemma 5, SλG is not of OTP representation type.

The case, when Gp is Abelian, is treated similarly. �

Corollary. [2, p. 553] Let G = Gp × B, |G′
p| > 2 and λ ∈ Z2(G,S∗).

The ring SλG is of OTP representation type if and only if F is a splitting

�eld for S̃λB.

P r o o f. Let µ be the restriction of λ to Gp × Gp. Since G′
p ⊂ Ker(µ), we

have |Ker(µ)| > 2. Next apply Theorem 1. �
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Proposition 2. Let B be a nilpotent p′-group.
(i) If the �eld F does not contain a primitive qth root of 1 for some prime

q | |B|, then F is not a splitting �eld for each algebra F λB.

(ii) The �eld F is a splitting �eld for all twisted group algebras F λB if

and only if F = F q and F contains a primitive qth root of 1 for every prime

q | |B|.

P r o o f. (i) Assume that F does not contain a primitive qth root of 1 for some

prime q | |B|. The center of a Sylow q-subgroup Bq of B contains an element b
of order q. If {ug : g ∈ B} is a natural F -basis of the algebra F λB, then ub lies
in the center of F λB. Let uqb = γue, γ ∈ F ∗, and let F be a splitting �eld for

the algebra F λB. Denote by f1, . . . , fm a complete system of minimal pairwise

orthogonal central idempotents of F λB. We have ub = β1f1 + . . . + βmfm,
where βj ∈ F for any j ∈ {1, . . . ,m}. Then γ = βq

j for every j. It follows

that β1 = . . . = βm, hence ub = β1ue. This contradiction proves that F is not

a splitting �eld for the algebra F λB.

(ii) Suppose that F is a splitting �eld for F λB for each λ ∈ Z2(B,F ∗).
Then every irreducible projective F -representation of the group B is abso-

lutely irreducible. Let q be a prime divisor of |B|. There exists a normal

subgroup D of B such that |B/D| = q. Denote by π : B → B/D the canoni-

cal group homomorphism and by V a �nite-dimensional vector space over F .
If Γ̄ : B/D → GL(V ) is an irreducible projective F -representation of B/D on

V , then Γ := Γ̄ ◦ π is an irreducible projective F -representation of B on the

space V and D ⊂ Ker(Γ). Assume that B/D = 〈 bD 〉 and Γ̄(bD)q = γ idV ,
γ ∈ F ∗. Since every Γ̄ is absolutely irreducible, γ ∈ F q and F contains

a primitive qth root of 1.
Assume now that the �eld F contains a primitive qth root of 1 and F = F q

for each prime q | |B|. Let λ ∈ Z2(B,F ∗). Then F λB = FµB, where µ
|B|
x,y = 1

for all x, y ∈ B. There exists an F -algebra homomorphism of FH onto FµB,
where H is a central extension of a cyclic group of order |B| by the group B.
Since F contains a primitive |H|th root of 1, by Corollary 70.24 [7, p. 475],

F is a splitting �eld for FH. Hence, F is a splitting �eld for F λB for each

λ ∈ Z2(B,F ∗). �

Proposition 3. Let G = Gp × B, |G′
p| �= 2, µ ∈ Z2(Gp, F

∗), ν ∈ Z2(B,S∗)
and λ = µ×ν. The ring SλG is of OTP representation type if and only if one

of the following conditions is satis�ed:

(i) FµGp is a �eld;

(ii) p = 2, |G′
2| = 1 and 2 dimF FµG2 = |G2|;

(iii) F is a splitting �eld for the F -algebra S̃νB.
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P r o o f. If |G′
p| > 2 then, by Corollary to Theorem 1, the ring SλG is of OTP

representation type if and only if F is a splitting �eld for S̃νB. Let |G′
p| = 1

and K = FµGp. If K is a �eld, then SµGp = K[[X]] is a principal ideal ring.

Every indecomposable SµGp-module is isomorphic to SµGp. We have

EndSµGp(SµGp) ∼= SµGp/XS
µGp

∼= K.

The �eld K is a �nite purely inseparable extension of F . Let W be an irre-

ducible SνB-module and D := EndSνB(W ). Then D ∼= End
S̃νB

(W̃ ). Since

S̃νB is a separable algebra, the center of the division F -algebra D is a sepa-

rable extension of F [7, p. 485]. The index of D is not divisible by p [16]. It

follows that K ⊗F D is a skew�eld. Applying Lemmas 1 and 6, we conclude

that SµGp#W is an indecomposable SλG-module. Hence, by Lemma 5, SλG
is of OTP representation type.

Assume that p > 2 and K is not a �eld. Let H be the socle of Gp. We have

FµH ∼= FµH1⊗F FH2, where |H2| ≥ p. It follows that SµH ∼= SµH1⊗S SH2.

By Lemmas 2 and 3, for any �nite separable extension L of the �eld F , there
exists an indecomposable SµGp-module V such that EndSµGp(V ) is a �nite

purely inseparable extension of L. Arguing as in the proof of Theorem 1, we

conclude that SλG is of OTP representation type if and only if F is a splitting

�eld for the algebra S̃νB.
Suppose that p = 2 and K is not a �eld. If 4 dimF FµG2 ≤ |G2| then, as in

the case p > 2, we prove that SλG is of OTP representation type if and only

if F is a splitting �eld for the algebra S̃νB. If 2 dimF FµG2 = |G2| then, by
Theorem 4.2 [2, p. 552], the ring SλG is of OTP representation type. �

Corollary. Let Gp be an Abelian p-group, B a nilpotent p′-group, G = Gp×B,
µ ∈ Z2(Gp, F

∗), ν ∈ Z2(B,S∗) and λ = µ× ν. Assume that the �eld F does

not contain a primitive qth root of 1 for some prime q | |B|. The ring SλG
is of OTP representation type if and only if one of the following conditions is

satis�ed:

(i) FµGp is a �eld;

(ii) p = 2 and 2 dimF FµG2 = |G2|.
P r o o f. Apply Propositions 2 and 3. �

Proposition 4. Let p = 2, G = G2 ×B, µ ∈ Z2(G2, F
∗), ν ∈ Z2(B,S∗) and

λ = µ× ν. Assume that |G2| �= 8, |G′
2| = 2 and [F : F 2] ≤ 2. Then SλG is of

OTP representation type if and only if F is a splitting �eld for S̃νB.

P r o o f. If F is a perfect �eld, then µ is a coboundary [15, p. 43]. In this

case SµG2 is the group ring SG2. Since |G2| > 8, by Theorem 1, SλG is of

OTP representation type if and only if F is a splitting �eld for S̃νB. Assume
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now that [F : F 2] = 2. Arguing as in the proof of Theorem 1, we deduce, by

Lemmas 1, 4, 5, 6 and 7, that SλG is of OTP representation type if and only

if F is a splitting �eld for S̃νB. �

4. Groups of OTP projective representation type

We recall from [3, p. 200] that i(F ) is the supremum of the set that consists

of 0 and all positive integers m such that an F -algebra of the form

F [t]/(tp − α1)⊗F . . .⊗F F [t]/(tp − αm)

is a �eld for some α1, . . . , αm ∈ K.

Theorem 2. Let G = Gp ×B, |G′
p| �= 2 and s be the number of invariants of

Gp/G
′
p. The group G is of OTP projective (S,F ∗)-representation type if and

only if one of the following conditions is satis�ed:

(i) |G′
p| = 1 and s ≤ i(F );

(ii) p = 2, |G′
2| = 1, s = i(F ) + 1 and G2 has at least one invariant

equal to 2;
(iii) F is a splitting �eld for F σB for some σ ∈ Z2(B,F ∗).

P r o o f. Let p = 2 and G2 be Abelian. If s ≥ i(F ) + 2, then 4 dimF F λG2 ≤
|G2| for any λ ∈ Z2(G2, F

∗). In this case, by Proposition 3, G is of OTP pro-

jective (S,F ∗)-representation type if and only if the condition (iii) is satis�ed.

Assume that s = i(F ) + 1. If G2 has at least one invariant equal to 2, then
there exists a cocycle λ ∈ Z2(G2, F

∗) such that 2 dimF F λG2 = |G2|. Hence,
by Proposition 3, G is of OTP projective (S,F ∗)-representation type. Sup-

pose that every invariant of G2 is greater than 2. Then 4 dimF F λG2 ≤ |G2|
for each λ ∈ Z2(G2, F

∗). By Proposition 3, G is of OTP projective (S,F ∗)-
representation type if and only if the condition (iii) is satis�ed.

Let p ≥ 2 and Gp be Abelian. There exists a cocycle µ ∈ Z2(Gp, F
∗) such

that FµGp is a �eld if and only if s ≤ i(F ). For any ν ∈ Z2(B,F ∗), we have
S̃νB ∼= F νB. Applying Proposition 3, we �nish the proof. �

Corollary. Let Gp be an Abelian p-group, s the number of invariants of Gp,

B a nilpotent p′-group and G = Gp × B. Assume that the �eld F does not

contain a primitive qth root of 1 for some prime q | |B|. The group G is of

OTP projective (S,F ∗)-representation type if and only if one of the following

conditions is satis�ed:

(i) s ≤ i(F );
(ii) p = 2, s = i(F ) + 1 and G2 has at least one invariant equal to 2.

P r o o f. Apply Proposition 2 and Theorem 2. �
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Lemma 9. Let B be an Abelian p′-group. The �eld F is a splitting �eld for

some algebra F λB if and only if B has a subgroup H such that B/H is of sym-

metric type and F contains a primitive mth root of 1, where

m = max{exp(B/H), expH}.

P r o o f. Let λ ∈ Z2(B,F ∗), {ub : b ∈ B} be a natural F -basis of the algebra
F λB, Z the center of F λB and H = {g ∈ B : ug ∈ Z}. Then H is a subgroup

of B and Z = F λH. The algebra F λB may be viewed as a twisted group ring

of the group B̄ := B/H over the ring Z. By Lemma 3 [1, p. 785],

F λB = Z λ̄B̄ ∼= Z λ̄N1 ⊗Z . . .⊗Z Z
λ̄Nr,

where Ni is a group of type (qni
i , q

ni
i ), qi is a prime divisor of |B̄| and Z λ̄Ni is

a central Z-algebra, moreover

γx,y := λ̄x,y · λ̄−1
y,x ∈ F

and

γ
q

ni
i

x,y = 1

for all x, y ∈ Ni. It follows that F contains a primitive (exp B̄)th root of 1.
If F is a splitting �eld for F λB, then F is a splitting �eld for the commu-

tative F -algebra Z = F λH. Therefore F contains a primitive (expH)th root

of 1. The group B̄ = N1 × . . . × Nr is of symmetric type. This proves the

necessity.

Let us prove the su�ciency. Denote by K a �nite sub�eld of the �eld F
which contains a primitive mth root of 1, where m = max{exp(B/H), expH}.
We may assume that B is an Abelian q-group, where q �= p. Let

B̄ := B/H = 〈x1H 〉× 〈 y1H 〉× . . .× 〈 xrH 〉× 〈 yrH 〉,

where |xiH| = |yiH| = qni for each i ∈ {1, . . . , r}. We have

xq
ni

i = hi, yq
ni

i = h∗i ,

where hi, h
∗
i ∈ H. Let Z = KH with K-basis {uh : h ∈ H} and let A = ZµB̄

be the twisted group ring of B̄ over Z with Z-basis {vbH : b ∈ B} satisfying

the following conditions:

1) if bH = (x1H)i1(y1H)j1 . . . (xrH)ir(yrH)jr , where 0 ≤ is, js < qns , then

vbH = vi1x1H
vj1y1H

. . . virxrH
vjr

yrH
;

2) vq
ns

xsH
= uhs , v

qns

ysH
= uh∗

s
for all s ∈ {1, . . . , r};

3) vbH · vb̄H = ξj1ī11 . . . ξjr īr
r vi1+ī1

x1H
vj1+j̄1
y1H

. . . vir+īr
xrH

vjr+j̄r

yrH
,
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where ξs is a primitive (qns)th root of 1 for every s ∈ {1, . . . , r}. Then

A ∼= ZµN1 ⊗Z . . .⊗Z Z
µNr,

where ZµNs is a central twisted group ring of the group Ns = 〈xsH 〉× 〈 ysH 〉
over the ring Z.

Let g be an element of the group B. Then

g = xd1
1 y

t1
1 . . . xdr

r y
tr
r h,

where 0 ≤ ds, ts < qns for every s ∈ {1, . . . , r} and h ∈ H. We set

wg = vd1
x1H

vt1y1H
. . . vdr

xrH
vtryrH

uh.

Then {wg : g ∈ B} is a K-basis of the algebra A and wg1wg2 = λg1,g2wg1g2 ,

where λg1,g2 ∈ K∗ for all g1, g2 ∈ B. Hence A = KλB and K is a splitting

�eld for the algebra KλB. It follows that F is a splitting �eld for the algebra

F λB = F ⊗K KλB. �

Lemma 10. Let B be an Abelian p′-group of symmetric type and expB =
qm1
1 . . . qmt

t , where q1, . . . , qt are pairwise distinct prime numbers. The �eld F
is a splitting �eld for certain algebra F λB if and only if F contains a primitive

nth root of 1, where n = qk1
1 . . . qkt

t and 2kj ≥ mj for every j ∈ {1, . . . , t}.
P r o o f. Without loss of generality, we may assume that B is an Abelian

q-group of exponent qm. Let F contain a primitive (ql)th root of 1 and F does

not contain a primitive (ql+1)th root of 1. If l ≥ m then F is a splitting �eld

for the group algebra FB. Let m
2 ≤ l < m. The group B has a subgroup H

of exponent qm−l such that B/H is of symmetric type and exp(B/H) = ql.
Since m − l ≤ l, by Lemma 9, F is a splitting �eld for certain algebra F νB.
Suppose now that l < m

2 . Let λ ∈ Z2(B,F ∗), Z be the center of F λB and H
a subgroup of B such that Z = F λH. Then expH ≥ qm−l. If F is a splitting

�eld for F λB, then expH ≤ ql. We have qm−l ≤ ql, whence m − l ≤ l.
Hence l ≥ m

2 . This contradiction shows that F is not a splitting �eld for every

algebra F λB. �

Proposition 5. Let G = Gp × B be an Abelian group and s the number of

invariants of Gp. The group G is of OTP projective (S,F ∗)-representation
type if and only if one of the following conditions is satis�ed:

(i) s ≤ i(F );
(ii) p = 2, s = i(F ) + 1 and G2 has at least one invariant equal to 2;
(iii) B has a subgroup H such that B/H is of symmetric type and F con-

tains a primitive mth root of 1, where m = max{exp(B/H), expH}.
P r o o f. Apply Theorem 2 and Lemma 9. �
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Proposition 6. Let G = Gp×B be an Abelian group and s the number of in-

variants of Gp. Assume that B is of symmetric type and expB = qm1
1 . . . qmt

t ,

where q1, . . . , qt are pairwise distinct prime numbers. The group G is of OTP

projective (S,F ∗)-representation type if and only if one of the following con-

ditions is satis�ed:

(i) s ≤ i(F );
(ii) p = 2, s = i(F ) + 1 and G2 has at least one invariant equal to 2;
(iii) F contains a primitive nth root of 1, where n = qk1

1 . . . qkt
t and

2kj ≥ mj for each j ∈ {1, . . . , t}.

P r o o f. Apply Theorem 2 and Lemma 10. �

5. Groups of purely OTP projective representation type

Lemma 11. [5, p. 322] Let R be a Noetherian integral domain whose integral

closure is a �nitely generated R-module. Then every �nitely generated torsion

free R-module is a direct sum of ideals in R if and only if each ideal in R is

generated by one or two elements.

Theorem 3. Let G = Gp × B. The group G is of purely OTP projective

S-representation type if and only if |Gp| = 2 or F is a splitting �eld for F νB
for any ν ∈ Z2(B,F ∗).

P r o o f. Assume that |Gp| > 2 and σ ∈ Z2(B,S∗). By Theorem 1, the

ring SλG = SGp ⊗S S
σB is of OTP representation type if and only if F is

a splitting �eld for S̃σB. Hence, by Lemma 7, if |Gp| > 2 then G is of purely

OTP projective S-representation type if and only if F is a splitting �eld for

every algebra F νB.
Let p = 2 and G2 = 〈 a 〉 be the group of order 2. If V is an indecomposable

SG2-module then, by [13, p. 70], EndSG2(V ) ∼= F . Hence, by Lemmas 1, 5 and

6, the ring SG2⊗S S
νB is of OTP representation type for any ν ∈ Z2(B,S∗).

Suppose now that λ ∈ Z2(G,S∗) and SλG2 is not a group ring. Then

SλG2 = Sue + Sua, where u
2
a = f(X)ue, f(X) ∈ S∗ and f(X) �∈ S2. Let

f(X) = a0 + a1X + a2X
2 + . . . , where aj ∈ F for every j ∈ {0, 1, 2, . . . },

θ be a root of the polynomial t2 − f(X) and K = T (θ), where T is the quo-

tient �eld of S. We have SλG2
∼= S[θ]. Denote by L the integral closure of

S[θ] in the �eld K. Then L = S[ω], where ω = θ or ω = X−n(b0 + b1X +
. . .+ bn−1X

n−1 + θ), moreover in the second case

f(X) = b20 + b21X
2 + . . .+ b2n−1X

2(n−1) +
∑
j≥2n

ajX
j ,

n ≥ 1, a2n �∈ F 2 or a2n+1 �= 0.
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Every ideal of the ring S[θ] is generated by one or two elements. Let V
be an indecomposable S[θ]-module. If z ∈ S[θ], v ∈ V and zv = 0, then
z2v = 0. Since z2 ∈ S and V is a free S-module, z2 = 0 or v = 0. Hence z = 0
or v = 0. This means that V is a torsion-free S[θ]-module. By Lemma 11,

V is isomorphic to an ideal J of the ring S[θ]. The ideal J is a free S-
module of rank 2. It follows that T ⊗S J is an indecomposable T λG2-module.

By Theorem 3.1 [2, p. 549], the algebra T λG is of OTP representation

type. Therefore, (T ⊗S J)#(T ⊗S W ) is an indecomposable T λG-module for

any irreducible SλB-module W . It follows that J#W is an indecomposable

SλG-module. By Lemma 5, the ring SλG is of OTP representation type.

Hence, G is of purely OTP projective S-representation type. �

Corollary. Let G = Gp × B be a nilpotent group. The group G is of purely

OTP projective S-representation type if and only if one of the following con-

ditions is satis�ed:

(i) |Gp| = 2;
(ii) F = F q and F contains a primitive qth root of 1 for each prime q | |B|.

P r o o f. Apply Proposition 2 and Theorem 3. �

Proposition 7. Let G = Gp × B. Assume that F = F q and F contains

a primitive qth root of 1 for each prime q | |B|. Then G is of purely OTP

projective S-representation type.

P r o o f. The �eld F is a splitting �eld for any algebra F νB. Hence, by

Lemma 7, SλG is of OTP representation type for every λ ∈ Z2(G,S∗). �

Corollary. If F is a separably closed �eld, then every group G = Gp × B is

of purely OTP projective S-representation type.
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Abstract. We deal with a functional equation of the form

f(x+ y) = F (f(x), f(y))

(the so called addition formula) assuming that the given binary operation F is asso-

ciative but its domain of de�nition is not necessarily connected. In the present paper

we shall restrict our consideration to the case when

F (u, v) =
u+ v + 2uv

1− uv
.

These considerations may be viewed as counterparts of Losonczi's [7] and Doma«ska's

[3] results on local solutions of the functional equation

f(F (x, y)) = f(x) + f(y)

with the same behaviour of the given associative operation F. In this paper we admit

fairly general structure in the domain of the unknown function.

1. Introduction

If (G, A) is a group or a semigroup and F stands for an arbitrary binary

operation in some set H, then a solution of the functional equation

f(x A y) = F (f(x), f(y))

is called a homomorphism of structures (G, A) and (H,F ). We consider here

a rational function F : {(x, y) ∈ IR : xy �= 1} −→ IR of the form

F (u, v) =
u+ v + 2uv

1− uv
.
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This is a rational two-place real-valued function de�ned on a disconnected

subset of the real plane IR2, that satis�es the equation

F (F (x, y), z) = F (x, F (y, z))

for all (x, y, z) ∈ IR3 such that products xy, yz, F (x, y)z, xF (y, z) are not equal
to 1. Rational functions with such or similar properties are termed associative

operations. The class of the associative operations was described by Chéritat

[2], and his work was followed by the author.

A homogra�c function ϕ : IR \ {1} −→ IR given by the formula

ϕ(x) =
x

1− x
, x �= 1

satis�es the functional equation

f(x+ y) =
f(x) + f(y) + 2f(x)f(y)

1− f(x)f(y)

for every pair (x, y) ∈ IR2 \D, where

D = {(x, 1 − x) : x ∈ IR} ∪ {(x, 1) : x ∈ IR} ∪ {(1, x) : x ∈ IR}.

We shall determine all functions f : G −→ IR, where (G, A) is a group, that

satisfy the functional equation

f(x A y) =
f(x) + f(y) + 2f(x)f(y)

1− f(x)f(y)
. (1)

A neutral element of a group (G, A) will be written as 0.
By a solution of the functional equation (1) we understand any function

f : G −→ IR that satis�es the equality (1) for every pair (x, y) ∈ G2 such

that f(x)f(y) �= 1. Thus we deal with the following conditional functional

equation:

f(x)f(y) �= 1 implies f(x A y) =
f(x) + f(y) + 2f(x)f(y)

1− f(x)f(y)
(E)

for all x, y ∈ G. Some results on addition formulas can be found for example

in Aczél's monography [1] and in the work of Doma«ska and Ger [4].

The following lemma will be useful in the sequel (see Ger [6]).

Lemma (on a characterization on subgroups). Let (G,+) be a group. Then

(H,+) is a subgroup of group (G,+) if and only if G ⊃ H �= ∅ and

H +H ′ ⊂ H ′,
where H ′ := G \H.
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2. Main result

We proceed with a description of solutions of (E).

Theorem. Let (G, A) be a group. A function f : G −→ IR yields a noncon-

stant solution to the functional equation

f(x)f(y) �= 1 implies f(x A y) =
f(x) + f(y) + 2f(x)f(y)

1− f(x)f(y)
(E)

for all x, y ∈ G if and only if either

f(x) :=
{

1 for x ∈ H,
−1 for x ∈ G \H

or

f(x) :=


A(x)

1−A(x)
for x ∈ Γ

−1 for x ∈ G \ Γ
or

f(x) :=


1 for x ∈ Γ \ Z
0 for x ∈ Z

−1 for x ∈ G \ Γ,

where (H, A), (Γ, A) are subgroups of the group (G, A), (Z, A) is a subgroup of

the group (Γ, A), and A : Γ −→ IR is a homomorphism such that 1 �∈ A(Γ).
Proof. Assume that f is a nonconstant solution of equation (E). First we

show that f(0) ∈ {−1, 0, 1}. Indeed, setting x = y = 0 in (E), we obtain

f2(0) = 1 or f(0) =
2f(0) + 2f2(0)

1− f2(0)
.

Put c := f(0). By equality

c = 2c
1 + c

1− c2

we have c = 0 or 2(1 + c) = 1− c2, whence c ∈ {0,−1} which jointly with

the equality c2 = 1 implies f(0) ∈ {−1, 0, 1}, which was to be shown.

If f(0) = −1, then setting y = 0 in (E) we obtain

f(x) = −1 or f(x) =
f(x)− 1− 2f(x)

1 + f(x)
= −1

for all x ∈ G, whence f = −1, a contradiction because we were assuming f to

be nonconstant.
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Now assume that f(0) = 1. We show that f(G) ⊂ {−1, 1}. Indeed, putting
y = 0 in (E), we obtain

f(x) = 1 or f(x) =
3f(x) + 1
1− f(x)

for all x ∈ G and by the equality

c =
3c+ 1
1− c

we have c = −1, whence

f(x) = 1 or f(x) = −1

for all x ∈ G. By setting

H := {x ∈ G : f(x) = 1},

we have

H ′ = {x ∈ G : f(x) = −1}

and we show that H A H ′ ⊂ H ′, which implies that H is a subgroup of the

group G (see Lemma). Fix arbitrarily elements x ∈ H and y ∈ H ′. Since
f(x)f(y) = −1, we get by (E) f(x A y) = −1, i.e. x A y ∈ H ′, which was to be

shown. So, in this case we have

f(x) :=
{

1 for x ∈ H,
−1 for x ∈ G \H.

Let now f(0) = 0. Put

Γ := {x ∈ G : f(x) �= −1}.

We are going to show that the complement Γ′ of the set Γ enjoys the property

Γ A Γ′ ⊂ Γ′, which implies (see Lemma) that Γ is a subgroup of the group G.
Fix arbitrarily x ∈ Γ and a y ∈ Γ′. Since f(x)f(y) = −f(x) �= 1, we obtain

by (E)

f(x A y) =
f(x)− 1 + 2f(x)(−1)

1− f(x)(−1) =
−1− f(x)
1 + f(x)

= −1,

i.e. x A y ∈ Γ′, which was to be shown. Since −1 �∈ f(Γ) and f |Γ satis�es (E),

a straightforward veri�cation shows that

f(x)f(y) �= 1 implies
f(x A y)

1 + f(x A y)
=

f(x)
1 + f(x)

+
f(y)

1 + f(y)
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for all x, y ∈ Γ, which jointly with

1− f(x)
1 + f(x)

− f(y)
1 + f(y)

= 1− f(x) + 2f(x)f(y) + f(y)
(1 + f(x))(1 + f(y))

=
1− f(x)f(y)

(1 + f(x))(1 + f(y))
,

i.e.

f(x)f(y) = 1⇐⇒ f(x)
1 + f(x)

+
f(y)

1 + f(y)
= 1,

states that the function A : Γ −→ IR of the form

A(x) :=
f(x)

1 + f(x)
, x ∈ Γ

yields a solution of equation

A(x) +A(y) �= 1 implies A(x+ y) = A(x) +A(y) (2)

for all x, y ∈ Γ. We show that 1 �∈ A(Γ). To prove this, assume that

A(x0) = 1 for some x0 ∈ Γ. Then we conclude that f(x0) = 1 + f(x0),
which is immposible. Since f(0) = 0, evidently A(0) = 0. From the theorem

proved by Ger [5] (since A(0) = 0) we conclude that A yields a homomorphism

of groups Γ and IR or there exist a subgroup Z of a group Γ such that A is of

the form

A(x) :=

{
0 for x ∈ Z,
1
2 for x ∈ Γ \ Z,

whence

f(x) :=


A(x)

1−A(x)
for x ∈ Γ,

−1 for x ∈ G \ Γ
or

f(x) :=


0 for x ∈ Z,
1 for x ∈ Γ \ Z,

−1 for x ∈ G \ Γ.

It is easy to check that each of the functions above yields a solution to the

equation (E). Thus the proof has been completed.

The following remark gives the form of a constant solutions of equation (E).
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Remark. Let (G, A) be a group. The only constant solutions of (E) are

f = −1, f = 0, and f = 1.

To check this, assume that f = c ful�ls (E). Then

c2 �= 1 =⇒ c = 2c
1 + c

1− c2
,

i.e.

c ∈ {−1, 1} or c = 0 or c = 2
1 + c

1− c2
,

whence

c ∈ {−1, 0, 1},

which was to be shown.
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Abstract. We consider quasi-uniform convergence of sequences of functions in a con-

text of Riemann integrability of its limit. Some generalizations are discussed as well.

Arzelá considered an additional regularity condition for a pointwise convergent

sequence of functions. Its role is particularly interesting while dealing with

convergence in the space of continuous functions. The precise de�nition reads

as follows.

De�nition 1. (Arzelá [1]. A pointwise convergent sequence (fn)
∞
n=1 of real

functions de�ned in a topological space X is called quasi-uniformly convergent

to a function f : X −→ R if

∀ε>0∀n∈N∃kn∃p1,... ,pkn≥n∀t∈X (min {|fpi(t) − f(t)| : i ∈ {1, . . . , kn}} < ε) . (1)

The following two facts concerning this convergence are well known.

Fact 1. (Szökefalvi-Nagy [2]). Assume that a sequence of continuous real

functions de�ned in a topological space X is quasi-uniformly convergent to

a function f : X −→ R. Then f itself is continuous.
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Fact 2. Let X be a compact topological space and let (fn)
∞
n=1 be a pointwise

convergent sequence of continuous real functions de�ned in X. If the limit

function f : X −→ R is continuous as well, then the sequence (fn)
∞
n=1 is

quasi-uniformly convergent to f .

In what follows, we shall consider a locally compact topological group

(G,+) with Haar measure h. It turns out that, in such circumstances, Fact 1

carries over to functions that are merely h-almost everywhere continuous.

Namely, the following theorem holds true.

Theorem 1. Let A stand for a Haar measurable subset of G with h(A) > 0.
Assume that a sequence (fn)

∞
n=1 of h-almost everywhere continuous real func-

tions de�ned in A is quasi-uniformly convergent to a function f : A −→ R.

Then f itself is h-almost everywhere continuous.

Proof. Let En denote the set of all continuity points of the function fn,
n ∈ N. Moreover, let

E =
∞⋂
n=1

En.

Since h(En) = h(A) for all n ∈ N, we also have h(E) = h(A).
Fix arbitrarily x0 from E. For any positive ε there exists a positive integer

n0 such that

|fn (x0)− f (x0)| <
ε

3
provided that n ≥ n0.

In view of condition (1), we infer that there exist n1, . . . , nk such that

n1 ≥ n0, . . . , nk > n0 and |fn1(t)− f(t)| < ε

3
∨ . . . ∨ |fnk

(t)− f(t)| < ε

3

for all t ∈ A.
Each of the functions fni is continuous at x0; therefore there exists a neigh-

borhood U0 of x0 such that

|fni (t)− fni(x0)| <
ε

3

for all t ∈ U0 ∩A and i ∈ {1, . . . , k}.
Let x ∈ U0 ∩A, and let nio be such that∣∣∣fni0

(x)− f (x)
∣∣∣ < ε

3
.

Then

|f (x)− f (x0)| ≤
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≤
∣∣∣f (x)− fni0

(x)
∣∣∣+ ∣∣∣fni0

(x)− fni0
(x0)

∣∣∣+ ∣∣∣fni0
(x0)− f (x0)

∣∣∣ < ε,

which proves that f is continuous at every point x0 from the set E, i.e.

h-almost everywhere in A. Thus the proof has been completed.

Recall that a function f : [a, b] −→ R is Riemann integrable if and only if it

is almost everywhere continuous with respect to the one-dimensional Lebesgue

measure. Therefore, applying Theorem 1 for the group (R,+) and A being

a compact interval in R, we obtain immediately the following result.

Theorem 2. Let (fn)
∞
n=1 be a sequence of Riemann integrable functions de-

�ned in [a, b]. If f : [a, b] −→ R is a quasi-uniform limit of the sequence

(fn)
∞
n=1, then f is Riemann integrable as well.

Plainly, in general, the Riemann integrability of f does not imply that

its Riemann integral is the limit of the sequence of integrals of functions fn,
n ∈ N. Nevertheless, we have the following dominated convergence result.

Theorem 3. Let fn : [a, b] −→ R be Riemann integrable functions. If

lim
n−→∞ fn = f quasi-uniformly and there exists a Riemann integrable function

g : [a, b] −→ R such that for every positive integer n one has

|fn| ≤ g,

then f is Riemann integrable and

lim
n−→∞

∫ b

a
fn(x) dx =

∫ b

a
lim

n−→∞ fn(x) dx.

For the proof it su�ces to apply Theorem 2 jointly with the classical

Lebesgue theorem on majorized convergence.

A careful inspection of the proof of Theorem 1 shows that the group struc-

ture as well as the translation invariance of the measure in question are inessen-

tial. As a matter of fact, the following abstract setting will allow us to repro-

duce this proof with no essential changes. Namely, given a topological space X
and a proper σ-ideal I of subsets of X, we say that a function f is I -almost

everywhere continuous in X whenever the set of all discontinuity points of

the function f yields a member of I . So, we terminate this paper with the

following

Theorem 4. Assume that a sequence (fn)
∞
n=1 of I -almost everywhere con-

tinuous real functions de�ned on X is quasi-uniformly convergent to a function

f : X −→ R. Then f itself is I -almost everywhere continuous.

Now, Theorem 1 becomes a special case of the latter result on setting

X := A and I := {F ⊂ X : h(F ) = 0} which, obviously, forms a proper

σ-ideal I of subsets of X.
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Abstract. In this paper, we describe the logic dual to n�valued Soboci«ski logic.

According to the idea presented by Malinowski and Spasowski [1], we introduce the

consequence dual to the consequence of n�valued Soboci«ski logic in two ways: by

a logical matrix and by a set of rules of inference. Then we prove that both approaches

are equivalent and the consequence is dual in Wójcicki sense (see [3]).

1. Introduction

By a language of a propositional logic (propositional calculus) we mean an

absolutely free algebra J = (S,F), where S is the set of all formulas built in

the standard way on a countable set of propositional variables p1, p2, . . . using
functors from the set F.

Let C denote the family of all consequences in S and let Cn ∈ C. The

consequence dCn dual to the consequence Cn is de�ned as follows:

De�nition 1.

α ∈ dCn(X)⇔ ∃Y
(
Y ⊆ X ∧ card(Y ) < ℵ0 ∧

⋂
β∈Y

Cn({β}) ⊆ Cn({α})
)

for all formulas α, β ∈ S and every X ⊆ S.

The de�nition of a dual consequence applied here was given by Wójcicki [3].

Let J = (S, {⇒,¬}) be the language of Soboci«ski's n�valued logic de-

scribed in [2].
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De�nition 2. n�valued implicational-negational Soboci«ski propositional cal-

culus is determined by the following matrix:

MSob = ({0, 1, 2, . . . , n− 1}, {1, 2, . . . , n− 1}, {⇒,¬}), n ≥ 3.

Here the only nondesignated value is 0.
Functions ⇒,¬ are de�ned as follows:

x⇒ y =

{
y if x �= y,

n− 1 if x = y,

¬x =

{
x+ 1 if x < n− 1,
0 if x = n− 1,

for any x, y ∈ {0, 1, . . . , n− 1}.

Let us consider the following matrix, which will be called dual to the matrix

MSob:

Md
Sob = ({0, 1, 2, . . . , n− 1}, {0}, {⇒,¬}), n ≥ 3,

where functions ⇒ and ¬ are de�ned in the same way as in the matrix

MSob.

De�nition 3.

1. ¬∗α df
= (α⇒ ¬(α⇒ α)).

2. α ∨∗ β df
= (¬∗α⇒ β).

We call the functors ¬∗ and ∨∗ the strong negation and the strong disjunc-

tion, respectively.

It is easy to observe that a function ¬∗ de�ned by

¬∗(x) =

{
n− 1 if x = 0,
0, otherwise,

corresponds in the matrix MSob to the functor ¬∗.
Similarly, a function ∨∗ de�ned by

x ∨∗ y =


y if y ≥ 1,
0 if x = 0 and y = 0,
n− 1 if x ≥ 1 and y = 0,

corresponds in the matrix MSob to the functor ∨∗.
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Lemma 1. For arbitrary formulas α, β ∈ S and for any homomorphism

h : J → ({0, 1, 2, . . . , n− 1}, {⇒,¬∗,∨∗}) the following statements are true:

1. if h(α⇒ β), h(α) ∈ {1, 2, . . . , n − 1}, then h(β) ∈ {1, 2, . . . , n− 1},

2. h(α⇒ β) = 0 i� h(α) ∈ {1, 2, . . . , n− 1} and h(β) = 0,

3. h(α) ∈ {1, 2, . . . , n− 1} i� h(¬∗α) = 0,

4. h(α ∨∗ β) ∈ {1, 2, . . . , n− 1}
i� h(α) ∈ {1, 2 . . . , n− 1} or h(β) ∈ {1, 2, . . . , n− 1}.

Let us consider two inference rules:

rmp :
α⇒ β, α

β
, rdmp :

¬∗(α⇒ β), β
α

.

Let R = {rmp}, Rd = {rdmp}.
Denote by Hom the set of all homomorphisms from (S, {⇒,¬}) into
({0, 1, . . . , n− 1}, {⇒,¬}) and let X ⊆ S. We de�ne the matrix consequence

CM(X), the content E(M) of the matrix M and the consequence CR(X) based
on inference rules from the set X in the standard way:

De�nition 4.

1. CMSob
(X) =

= {α ∈ S : ∀h∈Hom(h(X) ⊆ {1, . . . , n− 1} ⇒ h(α) ∈ {1, . . . , n− 1})} .

2. CMd
Sob

(X) = {α ∈ S : ∀h∈Hom(h(X) ⊆ {0} ⇒ h(α) = 0)} .

3. E(MSob) = {α ∈ S : ∀h∈Homh(α) ∈ {1, 2, . . . , n− 1}} .

4. E(Md
Sob) = {α ∈ S : ∀h∈Homh(α) = 0} .

5. CR(X) is the least set Y, which is closed under the rule rmp and which

satis�es E(MSob) ∪X ⊆ Y.

6. CRd(X) is the least set Y, which is closed under the rule rdmp and which

satis�es E(Md
Sob) ∪X ⊆ Y.

2. Some properties of CMSob
, CMd

Sob
, CR and CRd

Since modus ponens is the primitive rule of CR(X) and, as can be easily seen,

α ⇒ α,α ⇒ (β ⇒ α), (α ⇒ (β ⇒ γ)) ⇒ ((α ⇒ β) ⇒ (α ⇒ γ)) ∈ E(MSob),

then the classical deduction theorem holds:
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Lemma 2. For arbitrary α, β ∈ S and X ⊆ S

β ∈ CR(X ∪ {α}) i� α⇒ β ∈ CR(X).

Proof. Let us assume that the sequence α1, . . . , αn is the proof based on the

set X ∪ {α} of a formula β. We prove, by induction, that for any 1 � k � n
it holds

α⇒ αk ∈ CR(X).

Let k = 1. Then α1 = α or α1 ∈ X.

If α1 = α, then since α⇒ α ∈ E(MSob), we get α⇒ α1 ∈ CR(X).
If α1 ∈ X, then noticing that α1 ⇒ (α ⇒ α1) ∈ E(MSob), we can see

that the sequence α1 ⇒ (α⇒ α1), α1, α⇒ α1 is the proof based on X of the

formula α⇒ α1.

Assume now that k > 1 and for any i < k, α⇒ αi ∈ CR(X).
If αk ∈ X ∪ {α}, then the proof is analogous as in the case k = 1.
Thus, let αk results by rmp from αi, αj for some i, j < k.

Therefore αj = αi ⇒ αk and α ⇒ αi, α ⇒ (αi ⇒ αk) ∈ CR(X). Suppose

β0, . . . , βn−1, α ⇒ αi and γ0, . . . , γm−1, α ⇒ (αi ⇒ αk) are proofs of α ⇒ αi

and α⇒ αj , respectively. Then the sequence

β0, . . . , βn−1, γ0, . . . , γm−1, (α⇒ (αi ⇒ αk))⇒ ((α⇒ αi)⇒ (α⇒ αk)),
α⇒ (αi ⇒ αk), (α⇒ αi)⇒ (α⇒ αk), α⇒ αi, α⇒ αk is a proof of α⇒ αk,

because (α⇒ (β ⇒ γ))⇒ ((α⇒ β)⇒ (α⇒ γ)) ∈ E(MSob).
In the end, let us assume that the sequence α1, . . . , αn is the proof based

on X of the formula α⇒ β. Then αn = α⇒ β. It is easy to observe that the

sequence α1, . . . , αn, α, β is the proof based on X ∪ {α} of the formula β. �

The next Lemma follows directly from de�nitions and Lemma 1.

Lemma 3. For arbitrary α, β ∈ S and X ⊆ S

1. β ∈ CMSob
(X ∪ {α}) i� α⇒ β ∈ CMSob

(X).

2. α ∈ CMSob
({β}) i� β ∈ CMd

Sob
({α}).

3. α ∈ CMd
Sob

({β}) i� ¬∗(α⇒ β) ∈ CMd
Sob

(∅).

4. The consequences CMSob
, CMd

Sob
, CR and CRd are �nitary.

Lemma 4.

1. The rule rmp is an admissible rule of the consequence CMSob
.

2. The rule rdmp is an admissible rule of the consequence CMd
Sob
.
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Proof.

1. By Lemma 1, for any homomorphism h ∈ Hom such that

h(α ⇒ β), h(α) ∈ {1, . . . , n − 1} we have h(β) ∈ {1, . . . , n − 1}. This
means that β ∈ CMSob

({α ⇒ β, α}) and then modus ponens is an ad-

missible rule in CMSob
.

2. The proof can be carried out on the basis of De�nition 4 and Lemma 1.

✷

Lemma 5.

1. CMd
Sob

(∅) = CRd(∅) = E(Md
Sob).

2. CMSob
(∅) = CR(∅) = E(MSob).

3. CMSob
= CR.

Proof. Equalities 1. and 2. follow directly from de�nitions. The proof of the

equality 3. runs as follows:

Let X ⊆ S. To prove the inclusion CMSob
(X) ⊆ CR(X) assume that

α ∈ CMSob
(X). Due to the �nitariness of the matrix consequence CMSob

there

exists a �nite set X0 ⊆ X such that α ∈ CMSob
(X0).

If X0 = ∅, then using equality 2., we infer that α ∈ CR(X0) and therefore

α ∈ CR(X).
Let X0 = {α1, . . . , αm}.

By Lemma 3, we get α1 ⇒ (. . . ⇒ (αm ⇒ α) . . . ) ∈ CMSob
(∅). Then, by

equality 2. and Lemma 2, we have that α ∈ CR({α1, . . . , αm}). As X0 ⊆ X,
we see that α ∈ CR(X).

To prove the inclusion CR(X) ⊆ CMSob
(X), we apply Lemma 2, Lemma 3

and the fact that CR is �nitary. �

Let us de�ne recursively a generalized strong disjunction by

De�nition 5.

1. ∨∗(α) = α,

2. ∨∗(α, β) = α ∨∗ β,

3. ∨∗(α1, . . . , αn+1) = ∨∗(∨∗(α1, . . . , αn), αn+1), n � 2.

Lemma 6. For any natural number m � 1:

CMd
Sob

({∨∗(α1, . . . , αm)}) = CMd
Sob

({α1, . . . , αm}).
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Proof. We are going to show that for any formula α ∈ S,

α ∈ CMd
Sob

({∨∗(α1, . . . , αm)}) i� α ∈ CMd
Sob

({α1, . . . , αm}).

By Lemma 3, we have the following chain of equivalent statements:

α ∈ CMd
Sob

({∨∗(α1, . . . , αm)}) i� ∨∗ (α1, . . . , αm) ∈ CMSob
({α})

i� α⇒ ∨∗(α1, . . . , αm) ∈ CMSob
(∅).

The equivalence α⇒ ∨∗(α1, . . . , αm) ∈ CMSob
(∅) i� α ∈ CMd

Sob
({α1, . . . , αm})

can be justi�ed in the following way:

�⇒�. Suppose that there exists a homomorphism

h0 ∈ Hom such that h0({α1, . . . , αm}) ⊆ {0} and h0(α) ∈ {1, . . . , n− 1}.
Then, by Lemma 1, we get h0(α⇒ ∨∗(α1, . . . , αm)) = 0.

�⇐�. Let α ∈ CMd
Sob

({α1, . . . , αm}) and let us suppose that there exists

a homomorphism h1 such that h1(α ⇒ ∨∗(α1, . . . , αm)) = 0. By Lemma 1,

we have h1(α) ∈ {1, . . . , n − 1} and h1(∨∗(α1, . . . , αm)) = 0. According to

Lemma 1, we obtain h1({α1, . . . , αm}) ⊆ {0}, so h1(α) = 0. This contradicts
our assumption. �

Lemma 7. For any natural number m � 1:

CRd({∨∗(α1, . . . , αm)}) ⊆ CRd({α1, . . . , αm}).

Proof. The proof is inductive on m.

Let us observe that ¬∗(¬∗(α1 ∨∗ α2 ⇒ α1) ⇒ α2) ∈ E(Md
Sob). By Lemma

5 and De�nition 4, we have α1 ∨∗ α2 ∈ CRd({α1, α2}).
Thus CRd({α1 ∨∗ α2}) ⊆ CRd({α1, α2}).

Assume that CRd({∨∗(α1, . . . , αk)}) ⊆ CRd({α1, . . . , αk}) for some k ≥ 2.
We show that

CRd(∨∗(α1, . . . , αk+1)}) ⊆ CRd({α1, . . . , αk+1}).

Indeed, CRd({∨∗(α1, . . . , αk+1)}) = CRd({∨∗(∨∗(α1, . . . , αk), αk+1)}) ⊆
⊆ CRd({∨∗(α1, . . . , αk), αk+1}) = CRd({∨∗(α1, . . . , αk)} ∪ {αk+1}) =
=CRd(CRd({∨∗(α1, . . . , αk)})∪{αk+1})⊆CRd(CRd({α1, . . . , αk})∪{αk+1})=
= CRd({α1, . . . , αk} ∪ {αk+1}) = CRd({α1, . . . , αk+1}). �

Lemma 8. For arbitrary formulas α,α1, . . . , αm ∈ S
α ∈ CMSob

({∨∗(α1, . . . , αm)}) i� α ∈ CMSob
({α1}) ∩ . . . ∩ CMSob

({αm}).
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Proof. It is a direct consequence of Lemma 1 and De�nition 4. �

Lemma 9.

1. CMSob
({α}) = S ⇔ α ∈ CMd

Sob
(∅).

2. CMd
Sob

({α}) = S ⇔ α ∈ CMSob
(∅).

Proof.

1. �⇒�. Let us assume that CMSob
({α}) = S. Since ¬∗(p⇒ p) ∈ CMSob

({α}),
then applying Lemma 3, we get α ∈ CMd

Sob
({¬∗(p⇒ p)}).

But ¬∗(p⇒ p) ∈ CMd
Sob

(∅), so α ∈ CMd
Sob

(∅).
�⇐�. Let us assume that α ∈ CMd

Sob
(∅). By Lemma 1 and De�nition 4,

we get h(α ⇒ γ) ∈ {1, . . . , n − 1} for every homomorphism h and

any formula γ ∈ S. By De�nition 4 and Lemma 3, we obtain that

γ ∈ CMSob
({α}) for any formula γ ∈ S, so S ⊆ CMSob

({α}). As the

opposite inclusion trivially holds, we obtain CMSob
({α}) = S.

2. The proof is analogous as above. ✷

3. Main result

Now, we consider the consequences dual in the sense of De�nition 1 to the

consequences CR and CMSob
and their relation to CMd

Sob
and CRd .

Theorem 1.

CRd = CMd
Sob

= dCMSob
= dCR.

Proof. 1◦ CRd = CMd
Sob
.

By Lemma 5, we know that CRd(∅) = CMd
Sob

(∅) and since, by Lemma 4,

the rule rdmp is an admissible rule of the consequence CMd
Sob

, we get

CRd(X) ⊆ CMd
Sob

(X) for every X ⊆ S, which means that CRd ≤ CMd
Sob
.

Now, let α ∈ CMd
Sob

(X). Since the consequence CMd
Sob

is �nitary, there

exists a �nite set X0 such that X0 ⊆ X and α ∈ CMd
Sob

(X0).
If X0 = ∅, then by Lemma 5 we get α ∈ CRd(X).
Assume then that X0 = {α1, . . . , αm}.

Applying Lemma 6, we have α ∈ CMd
Sob

({∨∗(α1, . . . , αm)}). In turn, Lemma 3

yields that ¬∗(α⇒ ∨∗(α1, . . . , αm)) ∈ CMd
Sob

(∅). Therefore, by Lemma 5, we

obtain that ¬∗(α⇒ ∨∗(α1, . . . , αm)) ∈ CRd(∅).
Hence, α ∈ CRd({∨∗(α1, . . . , αm)}) ⊆ CRd({α1, . . . , αm}) and then

α ∈ CRd(X).
Thus we have shown that CMd

Sob
≤ CRd .
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2◦ CMd
Sob

= dCMSob
.

Let α ∈ CMd
Sob

(X). Then, by �nitariness of CMd
Sob

, we deduce that

α ∈ CMd
Sob

(X1) for a �nite set X1 ⊆ X.

If X1 = ∅, then by Lemma 9

CMSob
({α}) = S. Hence

⋂
β∈∅

CMSob
({β}) ⊆ CMSob

({α}), i.e. α ∈ dCMSob
(X).

IfX1 = {α1, . . . , αm}, then α ∈ CMd
Sob

({α1, . . . , αm}). Applying Lemmas 6

and 3, we obtain that ∨∗(α1, . . . , αm) ∈ CMSob
({α}). From this and Lemma 8,

we have CMSob
({α1})∩. . .∩CMSob

({αm}) ⊆ CMSob
({α}). Thus α ∈ dCMSob

(X)
by De�nition 1. We have just shown that CMd

Sob
≤ dCMSob

.

Suppose now that α ∈ dCMSob
(X). By De�nition 1, there exists a �nite set

Y ⊆ X such that
⋂

β∈Y
CMSob

({β}) ⊆ CMSob
({α}).

If Y = ∅, then from the fact that
⋂
β∈∅

CMSob
({β}) = S and Lemma 9, we

obtain that α ∈ CMd
Sob

(X).
Therefore, let us assume that Y = {β1, . . . , βm}.

Thus CMSob
({β1})∩ . . .∩CMSob

({βm}) ⊆ CMSob
({α}). By Lemma 8, we have

that CMSob
({∨∗(β1, . . . , βm)}) ⊆ CMSob

({α}), i.e.,
∨∗(β1, . . . , βm) ∈ CMSob

({α}).
Applying Lemma 3, we conclude that α ∈ CMSob

d({∨∗(β1, . . . , βm)}).
Then, according to Lemma 6, we obtain that α ∈ CMd

Sob
({β1, . . . , βm}).

Hence α ∈ CMd
Sob

(X) because Y = {β1, . . . , βm} ⊆ X. This proves that

dCMSob
(X) ⊆ CMd

Sob
(X), so dCMSob

≤ CMd
Sob
.

3◦ The equality dCMSob
= dCR follows directly from Lemma 5. �

Therefore, the sentential logic (S,CRd) can be regarded as a logic dual to

the Soboci«ski's n�valued logic (S,CR). Moreover, it is characterized by the

matrix MSob
d.
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Abstract. In the paper we show that the weighted double skeleton of a �nite dis-

tributive lattice is a su�cient structure to characterize the lattice numerically. We

prove some combinatorial formulas for the number of all elements of a �nite distribu-

tive lattice with the given weighted double skeleton, all its elements with exactly k

lower covers and all its covering pairs. Introducing some simple examples, we show

how the formulas work.

1. Introduction

In the case of big �nite lattices it is often impossible to represent them by

diagrams. To simplify their description it is useful to introduce the method

given by Herrmann in [6], called gluing of lattices, which in fact is a way

of building a lattice by means of smaller structures. It is particularly useful

in the case of a �nite distributive lattice, which turns out to be glued from

its maximal Boolean intervals according to some factor structure (being also

a lattice) called its skeleton.

However, knowing only the skeleton and Boolean lattices � bricks from

which an original distributive lattice D is built � does not mean that we know

how the lattice D looks like. To make the description complete we introduced

in [5] the notion of weighted double skeleton.

Here we are going to show how to compute some combinatorial values of

a �nite distributive lattice, whose weighted double skeleton is known.

Let us start with introducing some basic notions. It was proved in [2] that

maximal Boolean intervals which constitute a �nite distributive lattice are in

fact blocks of the smallest glued tolerance relation of the lattice.
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A tolerance relation on a lattice L is a re�exive and symmetric binary rela-

tion on L compatible with lattice operations. A block of a tolerance relation

Θ is a maximal subset B of L such that every pair of elements of B belongs to

Θ. In the case of �nite lattices the blocks of any tolerance relation Θ on a lat-

tice L are intervals and by introducing an order of blocks compatible with the

order of their largest elements we get a lattice called the factor lattice L/Θ.
It is clear that a congruence relation is a special case of a tolerance relation.

However, while dealing with congruences we get a partition of the underlying

set, here we are rather concerned with overlapping subsets determined by so

called glued tolerances. A tolerance relation on L is called glued if its transitive

closure is the total relation on L. It can be proved (see [3]) that blocks of the

smallest glued tolerance relation Σ(L) are generated by the covering relation

on L. The factor lattice L/ Σ(L) is called the skeleton of L, and it will be

denoted by S(L).
Let L be a �nite lattice and denote by Jk(L) (resp. Mk(L)) the set of

elements of L with exactly k lower (resp. upper) covers, i.e.

Jk(L) = {a ∈ L; |{b ∈ L; b ≺ a}| = k},
Mk(L) = {a ∈ L; |{b ∈ L; a ≺ b}| = k}.

It is clear that the zero of L is the only element of J0(L) and J1(L) is the set
of all join-irreducible elements of L (except the zero).

Let Cov(L) denote the set of all covering pairs in L, i.e.

Cov(L) = {(x, y) : x ≺ y, x, y ∈ L}.

In [7], using the Möbius function, Reuter proved a formula counting the

numbers of elements in Jk(L) (Mk(L)) for any �nite lattice with a given glued

tolerance relation. Let us recall that the Möbius function µP of a poset P can

be given by the recursive formula (see e.g. [1]):{
µP (x, x) = 1 for x ∈ P,
µP (x, y) = −Σx≤z<yµP (x, z) for x < z; x, z ∈ P.

Theorem 1. ([7]) Let Θ be a glued tolerance relation on a �nite lattice L with

the factor lattice P and blocks {Lp}p∈P . Then for any k ≥ 0

|Jk(L)| =
∑
r≤s

µP (r, s)|Jk(Lr ∩ Ls)|;

|Mk(L)| =
∑
r≤s

µP (r, s)|Mk(Lr ∩ Ls)|.
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Moreover,

|Cov(L)| =
∑
r≤s

µP (r, s)|Cov(Lr ∩ Ls)|.

As we see, to count elements of a lattice L we have to know not only the

factor lattice P (the skeleton, for example) and blocks of the glued tolerance

relation but intersections of all blocks, as well. All the information in the case

of �nite distributive lattices can be provided by the weighted double skeleton

of the lattice, the notion of which we introduced in [5].

2. The main result

Let D be a �nite distributive lattice with skeleton S. The blocks of the skeleton
tolerance Θ are the maximal Boolean intervals of D, we can denote them by

Bx = [0x, 1x] for x ∈ S. One can show that the subset {0x}x∈S with the

order inherited from D is a lattice isomorphic to the skeleton S (although the

meet operations of these lattices may not agree). The same can be said about

the subset {1x}x∈S (now, the operations of join in D and the lattice of units

can be di�erent). Thus, these subsets need not form sublattices of D. Let us
consider the partially ordered subset Sd = {0x}x∈S ∪ {1x}x∈S of D. We shall

call it the double skeleton of D.
For simplicity we will write x instead of 0x and x′ instead of 1x for

x ∈ S. Thus, we can regard the double skeleton as a digraph, whose ver-

tices are labeled by elements of some set S and its copy S′ and whose arcs

are determined just by the covering relation in the poset Sd. Let us observe

that S and S′ are not necessarily disjoint, hence some vertices can have two

labels. It is also clear that if a ≺ b in the poset Sd, then a < b in the lattice

D, and since all the maximal chains from a to b in a distributive lattice are of

the same length, which will be denoted by l[a, b], then in the digraph Sd we

can introduce the weight function w assigning to every arc (a, b) the length

of the interval [a, b] in D, i.e. w(a, b) = l[a, b]. The pair (Sd, w) is called the

weighted double skeleton of D.
Let a ≤ b in the poset Sd. Then there is a directed path from a to b in

the weighted double skeleton and let w̄(a, b) denote the weight of the shortest
path from a to b. In fact, in that case all the directed paths are of the same

weight and w̄(a, b) = l[a, b].

Theorem 2. If D is a �nite distributive lattice with the weighted double skele-

ton (Sd, w), then for any k ≥ 0

|Jk(D)| = |Mk(D)| =
∑

x≤y≤x′
x,y∈S

µS(x, y)
(
w̄(y, x′)

k

)
.
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In particular,

|D| =
∑

x≤y≤x′
x,y∈S

µS(x, y)2w̄(y,x′).

Moreover,

|Cov(D)| =
∑

x≤y≤x′
x,y∈S

µS(x, y)w̄(y, x′)2w̄(y,x′)−1.

Proof. Let D be a �nite distributive lattice with the weighted double skeleton

(Sd, w). Then maximal Boolean intervals of D can be written in the form

Bx = [x, x′] for x ∈ S. Let us observe that

dimBx = l[x, x′] = w(x, x′)

for any x ∈ S.
Moreover, if x < y in S, then

Bx ∩By �= ∅ i� y ≤ x′.

In that case Bx ∩ By is also a Boolean interval of the dimension l[y, x′] =
w(y, x′).

On the other hand, for any Boolean algebra B and any 0 ≤ k ≤ dimB
we have

|Jk(B)| = |Mk(B)| =
(
dimB

k

)
.

Thus, using Theorem 1, we get

|Jk(D)| = |Mk(D)| =
∑
x≤y

x,y∈S

µS(x, y)|Jk(Bx ∩By)| =
∑

x≤y≤x′
x,y∈S

µS(x, y)
(
w̄(y, x′)

k

)
.

In particular,

|D| =
∑
k≥0

|Jk(D)| =
∑
k≥0

∑
x≤y≤x′
x,y∈S

µS(x, y)
(
w̄(y, x′)

k

)

=
∑

x≤y≤x′
x,y∈S

µS(x, y)
∑
k≥0

(
w̄(y, x′)

k

)
=

∑
x≤y≤x′
x,y∈S

µS(x, y)2w̄(y,x′).
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Figure 1:

Now, let us notice that for any m-dimensional Boolean algebra B we have

|Cov(B)| = m2m−1.

Therefore, by Theorem 1,

|Cov(D)| =
∑
x≤y

x,y∈S

µS(x, y)|Cov(Bx ∩By)| =
∑

x≤y≤x′
x,y∈S

µS(x, y)w̄(y, x′)2w̄(y,x′)−1.

Example 1. Let us consider the distributive lattice D from Figure 1. Its

skeleton S is the three-element chain.

For every poset P being a chain x1 ≺ x2 ≺ . . . ≺ xn we have

µP (x1, xi) =


1 if i = 1,

−1 if i = 2,
0 otherwise.

The weighted double skeleton Sd of D can be found in Figure 1. Thus, the

number |J1(D)| of join-irreducible elements of D is counted by the formula:

|J1(D)| = w̄(x, x′) + w̄(y, y′) + w̄(z, z′)− w̄(y, x′)− w̄(z, y′)

= 2 + 2 + 2− 1− 1 = 4,

and the total number of elements of D is given by

|D| = 22 + 22 + 22 − 21 − 21 = 8.

Moreover,

|Cov(D)| = 2 · 21 + 2 · 21 + 2 · 21 − 1 · 20 − 1 · 20 = 10.
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Example 2. Let us consider the distributive lattice D from Figure 2, whose

skeleton S is a pentagon. Since the skeleton of the pentagon is the trivial

lattice, then D is an H-irreducible lattice (see [4]) and its double skeleton Sd

consists of two copies of the skeleton having one element in common � the top

element of the lattice of zeroes is at the same time the bottom element of the

lattice of units of the maximal Boolean intervals of D. The weighted double

skeleton of D can be seen in Figure 2.

The Möbius function for the pentagon is given by the table below:

a b c d e

a 1 −1 −1 0 1
b x 1 x x −1
c x x 1 −1 0
d x x x 1 −1
e x x x x 1

where x means that the value of µ for the given pair of elements does not

exist.

Thus, the number of elements of D can be counted by the following formula:

|D| =2w̄(a,a′) − 2w̄(b,a′) − 2w̄(c,a′) + 2w̄(e,a′) + 2w̄(b,b′)

− 2w̄(e,b′) + 2w̄(c,c′) − 2w̄(d,c′) + 2w̄(d,d′) − 2w̄(e,d′) + 2w̄(e,e′)

=23 − 21 − 22 + 20 + 22 − 21 + 23 − 22 + 23 − 22 + 23 = 21.
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Abstract. We consider some properties of functions de�ned in a topological space

X with values in a topological space Y . The de�nitions 1, 2 and 3 de�ne the same

class of functions when X and Y are equal to R with natural topology. In this article

we discuss some properties of those classes and give some su�cient conditions for the

space X in which real functions de�ned in X form the same class.

1. Classes of connected functions

We shall consider some properties of functions de�ned in a topological space

X with values in a topological space Y .

De�nition 1. [6] We shall say that a function f : X −→ Y is connected if

its graph is a connected set in X × Y .
The set of all functions which are connected will be denoted by C .

De�nition 2. [6] We shall say that a function f : X −→ Y is strongly con-

nected if f |E is a connected set for each connected subset E of X.

The set of all functions which are strongly connected will be denoted

by Cs.

De�nition 3. [4] We shall say that a function f : X −→ Y is locally strongly

connected if for each x in X and its open neighbourhood U there exists open

and connected neighbourhood E of x, E ⊂ U , such that f |E is a connected set

in the space X × Y .
The set of all functions which are locally strongly connected will be denoted

by Cls.
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The de�nitions 1, 2 and 3 de�ne the same class of functions when X and

Y are equal to R with natural topology.

In the article we shall discuss some properties of those classes and give

some su�cient conditions for the space X in which real functions de�ned in

X form the same class.

The terminology and properties concerned with ordered spaces are taken

from the articles [1] and [2]. All other topological notions and properties are

taken from [3] and [5].

The next properties follow immediately from the above de�nitions.

Property 1. Each continuous function is strongly connected.

Property 2. Each continuous function de�ned in a connected space is con-

nected.

Property 3. Each continuous function de�ned in a locally connected space is

locally strongly connected.

Theorem 1. If a topological spaces X is connected and Y is an arbitrary

topological space, then

Cs ⊂ C .

This theorem can be completed to get a su�cient condition for a space X
to be connected.

Theorem 2. If a topological space Y has at least two elements and for topo-

logical space X
Cs ⊂ C ,

then X is connected.

Theorem 3. If a topological spaces X is locally connected and Y is an arbi-

trary topological space, then

Cs ⊂ Cls.

Theorem 4. If a topological spaces X is connected and locally connected and

Y is an arbitrary topological space, then

Cls ⊂ C .

Proof. For each point x from X there is an open and connected set Ux

such that f |Ux is a connected set in X × Y . Of course,⋃
x∈X

Ux = X.
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Let
(
x1, f(x1)

)
and

(
x2, f(x2)

)
be arbitrary points of the graph of the function

f . The class of sets

{Ux : x ∈ X}

forms an open cover; then (see [3]) there exists a �nite sequence of points

(t1, . . . , tn) of the set X such that

x1 ∈ Ut1 , x2 ∈ Ut2 and Uti ∩ Utj �= O�

if and only if |i− j| ≤ 1.
The sets f |Uti are connected, f |Uti and f |Uti+1 are not disjoint. Hence the

set f |
n⋃

i=1

Uti is connected and contains points
(
x1, f(x1)

)
and

(
x2, f(x2)

)
.

We have proved that each two points of the graph of f can be joined by

a connected set, therefore the graph of f is connected. ✷

Example 1. Let us de�ne a function f1 : R2 −→ R in the following way

f1(x, y) =
{
x if x > 0, y > 0,
0 otherwise.

The graph of this function is connected but has no other property.

Example 2. Let L1 be the union of segments Pn connecting points

(
1
2n
, 0
)
,(

3
2n+2

,
8
10

)
and points

(
3

2n+2
,
8
10

)
,

(
1

2n+2
, 0
)

and a half-straight-line from

(1, 0) towards (2, 0).

Let L2 be the union of segments Qn connecting points

(
1
2n
,
1
10

)
,(

3
2n+2

,
9
10

)
and points

(
3

2n+2
,
9
10

)
,

(
1

2n+2
,
1
10

)
and a half-straight-line

from

(
1,

1
10

)
towards

(
2,

1
10

)
.

Let L3 be the union of segments Sn connecting points

(
1
2n
,
2
10

)
,

(
3

2n+2
, 1
)

and points

(
3

2n+2
, 1
)
,

(
1

2n+2
,
2
10

)
and a half-straight-line from

(
1,

2
10

)
towards

(
2,

2
10

)
.
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Let us de�ne a function f2 : R2 −→ R in the following way

f2(x, y) =



0 if (x, y) ∈ L1 ∪ L3,

1 if (x, y) ∈ L2,

0 if x > 0, y > 1,

0 if x > 0, y < 0,

0 if x ≤ 0,

continuous
and linear in each vertical segment between lines L1, L2,

continuous
and linear in each vertical segment between lines L2, L3,

0 otherwise.

The above-de�ned function f2 is connected and locally strongly connected

and, of course, has the local Darboux property, but it has no other, considered

in the article, properties.

Example 3. Let us de�ne a function f3 : R2 −→ R in the following way

f3(x, y) =



f2(x, y) if x > 0, y ∈ R,

1 if x ≤ 0, y ∈
(

1
10
,
9
10

)
,

10y if x ≤ 0, y ∈
(
0,

1
10

)
,

−10y + 10 if x ≤ 0, y ∈
(

9
10
, 1
)
,

0 if x ≤ 0, y ∈ (−∞, 0) ∪ (1,∞).

The function f3 is connected, strongly connected, locally strongly con-

nected and has the local Darboux property, but it has no other properties.

The above examples complete all the relations among the considered prop-

erties.
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2. Spaces in which classes of considered connected
functions coincide

If we consider real functions de�ned in an interval of real numbers, i.e. func-

tions f : R −→ R or f : (a, b) −→ R, then the four above-de�ned classes are

equal. When we want to compare those classes, it is necessary to consider

the space X to be connected (connected functions), locally connected (locally

strongly connected functions). Nevertheless, those classes of functions are dif-

ferent if the domain of the functions is R2 as we have seen in the �rst part of

the article.

If we assume that the space X has dimension 1, the situation is not better:

the function f de�ned in the unit circle of the complex plane by the formula

f
(
eit
)
= t if t ∈ [0, 2π]

is connected but it is not strongly connected.

It seems to be very useful the idea of cut points of a connected space, which

means that a point x0 is a cut point of a connected space X if the set X \{x0}
is not connected. A point x0 is a strong cut point of a connected space X if

the set X \ {x0} has (exactly) 2 connected components.

Similarly, if we assume that every point is a cut point of the space X, the

situation is not su�ciently good. The function f : X −→ Y de�ned by:

f(x, y) =


1 + sin 1

x if x ∈ [−1, 0), y = 0,

2 + sin 1
y if x = 0, y ∈ (0, 1],

0 if x ∈ [0, 1], y = 0,

where X = [−1, 1] × {0} ∪ {0} × [0, 1], is connected but it is not strongly

connected.

In this way we come to the conclusion that comparing our classes of con-

nected functions we should bound our considerations to functions which have

connected or locally connected spaces for which each point is a strong cut

point. However, such properties of topological spaces imply that they are

linearly ordered spaces. That is the reason for assuming that the spaces X
and Y are connected, locally connected and linearly ordered. In such a case

it is possible to consider the fourth class of functions, i.e. functions which cut

continuum.

If ≺ is an order relation in a topological space X, then this space is called

ordered if the sets

{x ∈ X : x ≺ a} and {x ∈ X : a ≺ x}
form a subbase of the topology in X.
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The sets

{x ∈ X : a ≺ x ∧ x ≺ b} and {x ∈ X : a ≺ x ∧ x ≺ b} ∪ {a, b}

are called open and closed intervals in X. These sets are denoted by (a, b)
and [a, b], respectively.

The sets

{x ∈ X : a ≺ x} and {x ∈ X : x ≺ b}
are denoted by (a,→) and (←, b), respectively.

Of course, the class of all open intervals in a linearly ordered space form

a base of this topology.

Lemma 1. In a linearly ordered, connected and locally connected topological

space each closed interval is compact.

Proof. Let X be a linearly ordered and connected topological space,

moreover let [a, b] be an arbitrary closed interval in the space X. Suppose

that {Us : s ∈ S} is an arbitrary open cover of the set [a, b]. Since X is

a linearly ordered space, then each open set can be represented as a union of

open intervals:

Us =
⋃
t∈Ts

Is,t,

where Is,t are intervals in X and Ts are some sets of indexes. Then

[a, b] ⊂
⋃
s∈S

⋃
t∈Ts

Is,t.

Since [a, b] is a connected subset of the space X, then (see [3]) there exists

a �nite sequence (s1, t1), . . . , (sn, tn) of indexes such that

a ∈ Is1,t1 , b ∈ Isn,tn

and

Isi,ti ∩ Isj ,tj �= O� ⇐⇒ |i− j| ≤ 1. (1)

Suppose now that some element x0 from [a, b] does not belong to the set
n⋃

i=1

Isi,ti . Let us assume for shortening of notation that Isi,ti = (ai, bi). Let

i0 = max {i ∈ {1, . . . , n} : ai ≺ x0} .

Hence (1) implies that

x0 ∈ (ai0 , bi0) ,
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what contradicts to the assumption. Thus

[a, b] ⊂
n⋃

i=1

Isi,ti

and consequently

[a, b] ⊂
n⋃

i=1

Usi .

It proves that the interval [a, b] is compact. ✷

Theorem 5. If topological spaces X and Y are linearly ordered, connected and

locally connected topological spaces, then each connected function

f : X −→ Y is strongly connected.

Proof. Suppose that there exists a connected function f : X −→ Y which

is not strongly connected. Then there exists a connected subset K of X such

that f |K is not a connected subset of the space Y . The set K can be one of

the following sets:

[a, b], (a, b), [a, b), (a, b], (←, b), or (a,→).

Assume �rst that K = [a, b]. Since the set f |K is not connected, then there

are two nonempty separated sets A and B in X × Y such that

f |K = A ∪B.

Suppose that (a, f(a)) ∈ A. There are two possibilities:

1. (b, f(b)) ∈ A,

2. (b, f(b)) ∈ B.

In the �rst case, let

A1 = A ∪ f |(←, a) ∪ f |(b,→), B1 = B.

Then

f = A1 ∪B1, A1 �= O� �= B1,

and the sets A1 and B1 are separated, which contradicts to the assumption.

If (b, f(b)) ∈ B, let

A1 = A ∪ f |(←, a), B1 = B ∪ f |(b,→).
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Then the sets A1 and B1 are nonempty and separated, which is impossible in

view of connectivity of the function (set) f .
Let now K = (a, b). Then there are nonempty and separated sets A and

B such that f |K = A ∪ B. There exist elements c and d in X such that

a ≺ c ≺ d ≺ b and the sets A1 and B1 are nonempty and separated, where

A ∩ ([c, d] × Y ) , B ∩ ([c, d] × Y ) .

It is impossible in view of connectivity of the function f .
Similar arguments can be applied in all remained cases for the set K. ✷

The next theorem is a simple corollary of theorem 4.

Theorem 6. If topological spaces X and Y are linearly ordered, connected and

locally connected, then each locally strongly connected function

f : X −→ Y is strongly connected.
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Abstract. An endomorphism of a graph G = (V,E) is a mapping f : V −→ V

such that for all x, y ∈ V if {x, y} ∈ E, then {f(x), f(y)} ∈ E. Let End(G) be the

class of all endomorphisms of graph G. The diamond product of graph G = (V,E)
(denoted by G , G) is a graph de�ned by the vertex set V (G , G) = End(G) and
the edge set E(G , G) = {{f, g} ⊂ End(G)|{f(x), g(x)} ∈ E for all x ∈ V }. Let

Km,n be a complete bipartite graph on m+ n vertices. This research aims to study

the algebraic property of V (Km,n , Km,n) = End(Km,n) after we have found that

Km,n,Km,n is also a complete bipartite graph onmmnn+nmmn vertices. The result

shows that all of its vertices (endomorphisms) form a noncommutative monoid.

1. Introduction

In the graph theory [2, 5], a graph G = (V,E) consists of a �nite nonempty

set V of objects called vertices, and a set E of 2-element subsets of V called

edges. In this paper we use the following notation and classi�cation of graphs.

• A path denoted Pn is a sequence of n + 1 vertices such that from each

of its vertices there is an edge to the next vertex in the sequence.

• A cycle denoted Cn consists of n vertices connected in a closed chain.

• A complete graph denoted Kn is a graph on n vertices such that every

two distinct vertices of G are adjacent.
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• A graph G is called a bipartite graph if V (G) can be partitioned into

two subsets U andW , called partite sets, such that every edge of G joins

a vertex of U and a vertex of W .

• A complete bipartite graph denoted Km,n is a graph on m+ n vertices

such that one can partition V into two subsets U andW , where |U | = m
and |W | = n. Every edge of G joins a vertex of U and a vertex of W as

well as every vertex of U is adjacent to every vertex of W .

• A u − v walk in G is a sequence of vertices in G, beginning at u and

ending at v such that consecutive vertices in the sequence are adjacent.

• A u− v path in G is a u− v walk in which no vertices are repeated.

• A graph G is called connected if G contains a u− v path for every pair

u, v of distinct vertices in G.

• A regular graph is a graph where each vertex has the same number of

neighbors, i.e. every vertex has the same degree or valency. A regular

graph with vertices of degree k is called a k-regular graph or regular

graph of degree k.

• The distance between two vertices u and v in a graph (denoted by

d(u, v)) is the number of edges in a shortest path connecting them.

This is also known as the geodesic distance because it is the length

of the graph geodesic between those two vertices. If there is no path

connecting the two vertices, i.e. if they belong to di�erent connected

components, then conventionally the distance is de�ned as in�nite.

• The diameter of a graph, denoted diam(G), is the maximum distance

between any two vertices in the graph.

De�nition 1. [1] A homomorphism of a graph G = (V,E) into a graph

H = (V ′, E′) is a mapping f : V −→ V ′ which preserves edges: for all

x, y ∈ V , if {x, y} ∈ E, then {f(x), f(y)} ∈ E′. Let Hom(G,H) be the class

of all homomorphisms from a graph G into a graph H. In particular, an en-

domorphism of a graph G = (V,E) is a mapping f : V −→ V such that for

all x, y ∈ V , if {x, y} ∈ E, then {f(x), f(y)} ∈ E. Let End(G) be the class of

all endomorphisms of graph G.

From this de�nition, one can easily see that Hom(G,H) may or may

not exist. For example, Hom(P1, C3) consists of 6 homomorphisms, while

Hom(C3, P1) is an empty set.
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Figure 1: Hom(P1, C3).

De�nition 2. [1] The diamond product of a graph G = (V,E) and a graph

H = (V ′, E′) (denoted by G,H) is a graph de�ned by the vertex set V (G,H) =
Hom(G,H), where Hom(G,H) �= ∅, and the edge set E(G ,H) = {{f, g} ⊂
Hom(G,H)|{f(x), g(x)} ∈ E′ for all x ∈ V }. In particular, the diamond

product of a graph G with itself (G,G) is de�ned by the vertex set V (G,G) =
End(G) and the edge set E(G ,G) = {{f, g} ⊂ End(G)|{f(x), g(x)} ∈ E for

all x ∈ V }.

An example of graph P1 , C3 is shown below.

Figure 2: Graph P1 , C3.

With this de�nition, there are some interesting results as follows:

Theorem 1. [3] The graph Pm ,Pn is connected for all positive integers m,n
and diam(Pm , Pn) = n.

Theorem 2. [3] Graphs Pm , Cn and Cn , Pm are connected for all positive

integers m,n. diam(Pm , Cn) ≤ m+ n and diam(Cn , Pm) = n.

Theorem 3. [3] If G is a connected graph, then the graph Pm,G is connected

for all positive integers m, and diam(Pm ,G) = diam(G)+2m.
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2. Some observations

In this paper, we study the diamond product of two complete bipartite graphs

Km,n.

• Denote V (Km,n) = {1, 2, 3, ...,m,m + 1,m+ 2, ...,m + n}, where
Vm = {x ∈ V (Km,n) | x ≤ m}, and
Vn = {x ∈ V (Km,n) | m+ 1 ≤ x ≤ m+ n}.
Since Km,n is a complete bipartite graph, each vertex of Vm is adjacent

to all vertices of Vn. Every edge joins a vertex of Vm and a vertex of Vn.
We can de�ne a function h : V (Km,n)→ {0, 1} such that

h(x) =

{
0 if x ∈ Vm,
1 if x ∈ Vn.

By the de�nition of a complete bipartite graph, we obtain for all

x, y ∈ V (Km,n), {x, y} ∈ E(Km,n) if and only if | h(x)− h(y) |= 1.

• Let f : V (Km,n)→ V (Km,n) be a homomorphism.

Then f ∈ V (Km,n ,Km,n) if and only if

h(f(i)) =

{
0 if i ∈ Vm,
1 if i ∈ Vnor

h(f(i)) =

{
1 if i ∈ Vm,
0 if i ∈ Vn.

For example, let us take a look at K2,2 ,K2,2.

• We can de�ne a norm as follows:

‖f − g‖ = max
i∈V (Km,n)

|h(f(i)) − h(g(i))|.

3. Main results

Lemma 1. For f, g ∈ V (Km,n ,Km,n), {f, g} ∈ E(Km,n ,Km,n) if and only

if ‖f − g‖ = 1.

Proof.

(⇒) Let {f, g} ∈ E(Km,n , Km,n). We have {f(i), g(i)} ∈ E(Km,n) for all

i ∈ V (Km,n). Thus |h(f(i)) − h(g(i))| = 1 for all i ∈ V (Km,n). This means

that ‖f − g‖ = 1.
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Figure 3: Graph K2,2 ,K2,2

(⇐) Let ‖f − g‖ = 1, where f, g ∈ V (Km,n , Km,n). From the de�nition of

norm, ∃ i0 ∈ V (Km,n) such that |h(f(i0)) − h(g(i0))| = 1. Without loss of

generality we may assume that h(f(i0)) = 0 and h(g(i0)) = 1.
If i0 ∈ Vm, then we obtain

h(f(i)) =

{
0 if i ∈ Vm,
1 if i ∈ Vn

and

h(g(i)) =

{
1 if i ∈ Vm,
0 if i ∈ Vn.

So |h(f(i)) − h(g(i))| = 1, for all i ∈ V (Km,n).
If i0 ∈ Vn, then we obtain

h(f(i)) =

{
1 if i ∈ Vm,
0 if i ∈ Vn

and

h(g(i)) =

{
0 if i ∈ Vm,
1 if i ∈ Vn.

So |h(f(i)) − h(g(i))| = 1 for all i ∈ V (Km,n). From both cases, we obtain

|h(f(i)) − h(g(i))| = 1 for all i ∈ V (Km,n). By the de�nitions of function h
and diamond product, {f, g} ∈ E(Km,n ,Km,n). ✷
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Theorem 4. Km,n ,Km,n is a complete bipartite graph on mmnn + nmmn

vertices.

Proof.

First, let us de�ne Vm
 =

{
f ∈ V (Km,n ,Km,n) | h(f(i)) =

{
0 if i ∈ Vm
1 if i ∈ Vn

}
and Vn

 =
{
f ∈ V (Km,n ,Km,n) | h(f(i)) =

{
1 if i ∈ Vm
0 if i ∈ Vn

}
.

Obviously, V (Km,n ,Km,n) = Vm
 ∪ Vn and Vm

 ∩ Vn = ∅.

To show that the graph of Km,n , Km,n is bipartite, we need to prove that

{f, g} ∈ E(Km,n , Km,n) if and only if f and g belong to di�erent sets of

vertices Vm
 and Vn.

(⇒) First, let f and g belong to the same set of vertices. Without loss of

generality we can assume f, g ∈ Vm. We have

‖f − g‖ = max
i∈V (Km,n)

|h(f(i))− h(g(i))|.

If i ∈ Vm, then h(f(i)) = 0, h(g(i)) = 0 and

max
i∈Vm

|h(f(i)) − h(g(i))| = max |0− 0| = 0.

If i ∈ Vn, then h(f(i)) = 1, h(g(i)) = 1 and

max
i∈Vn

|h(f(i))− h(g(i))| = max |1− 1| = 0.

Therefore ‖f − g‖ = 0 implies that {f, g} /∈ E(Km,n ,Km,n) by Lemma 1.

Then we conclude that if f and g belong to the same sets of vertices, there is

no edge {f, g} in the graph Km,n ,Km,n.

(⇐) Without loss of generality we can take f ∈ Vm and g ∈ Vn. We have

‖f − g‖ = max
i∈V (Km,n)

|h(f(i))− h(g(i))|.

If i ∈ Vm, then h(f(i)) = 0, h(g(i)) = 1 and

max
i∈Vm

|h(f(i)) − h(g(i))| = max |0− 1| = 1.

If i ∈ Vn, then h(f(i)) = 1, h(g(i)) = 0 and

max
i∈Vn

|h(f(i))− h(g(i))| = max |1− 0| = 1.
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Then |h(f(i)) − h(g(i))| = 1 for all i ∈ V (Km,n), and ‖f − g‖ = 1. Therefore
{f, g} ∈ E(Km,n ,Km,n).

By de�nition, all the vertices f ∈ Vm
 have the same value of h(f(i)) for

all i ∈ V , and all the vertices g ∈ Vn
 have the same value of h(g(i)) for all

i ∈ V such that ‖f − g‖ = 1. This means that each vertex of Vm
 is adjacent

to all vertices of Vn
, making it a complete bipartite graph.

We know that Km,n ,Km,n have two partite sets Vm
 and Vn

. From the

de�nition of Vm
, an endomorphism maps each vertex of Vm into a vertex of

Vm giving us mm choices and maps each vertex of Vn into a vertex of Vn with

nn choices. Thus |Vm| = mmnn. On the other hand, an endomorphism in

Vn
 maps each vertex of Vm into a vertex of Vn giving us nm choices and maps

each vertex of Vn into a vertex of Vm with mn choices. Thus |Vn| = nmmn.

Both cases combined, we obtain the number of vertices in the theorem. ✷

Corollary 1. Km,n ,Km,n is a regular graph if and only if m = n.

Proof.

Since Km,n ,Km,n is a complete bipartite graph, we may pick f ∈ Vm
 and

g ∈ Vn. From Theorem 4, we have the following:

• {f, k} ∈ E(Km,n ,Km,n) for all k ∈ Vn.
Thus deg(f) = |Vn| = nm ·mn for all f ∈ Vm.

• {g, h} ∈ E(Km,n ,Km,n) for all h ∈ Vm.
Thus deg(g) = |Vm| = mm · nn for all g ∈ Vn.

Hence, Km,n ,Km,n is a regular graph if and only if deg(f) = deg(g), which
implies m = n. ✷

Now let us consider the vertex set ofKm,n,Km,n with operation of function

composition.

Theorem 5. The vertex (endomorphism) set of Km,n,Km,n with composition

form a noncommutative monoid for all positive integers m,n > 1.

Proof.

It is clear that V (Km,n ,Km,n) is a monoid. To show that in the case when

m,n > 1, it is noncommutative we can take f, g ∈ V (Km,n ,Km,n) such that

f(i) =

{
i if i ∈ Vm,
m+ 1 if i ∈ Vn,

g(i) =

{
m+ 2 if i ∈ Vm,
i−m if i ∈ Vn.
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Then we have (f ◦ g)(m) = f(g(m)) = f(m+ 2) = m+ 1. But (g ◦ f)(m) =
g(f(m)) = g(m) = m + 2. Thus f ◦ g �= g ◦ f , making it a noncommutative

monoid. ✷

Remark 1. This noncommutative monoid is not a group since an endomor-

phism may not have an inverse. There exists a many-to-one endomorphism

such as

f(i) =

{
1 if i ∈ Vm,
m+ 1 if i ∈ Vn.

Therefore, this endomorphism set forms only a noncommutative monoid, not

a group.
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Abstract. The purpose of this paper is to study the notion of a ΨI-density point and
ΨI-density topology, generated by it analogously to the classical I-density topology

on the real line. The idea arises from the note by Taylor [3] and Terepeta and

Wagner-Bojakowska [2].

We introduce the following notation:

N the set of positive integers,

R the set of real numbers,

R+ the set of positive real numbers,

S σ-algebra of subsets of R having the Baire property,

I σ-ideal of subsets of R of the �rst category,

C the family of all nondecreasing continuous functions ψ : R+ → (0, 1] such
that lim

x→0+
ψ(x) = 0.

We say that two sets A and B are equivalent (A ∼ B) if A1B ∈ I, where
A1B is the symmetric di�erence of A and B. Additionally, if A ⊂ R, α ∈ R

and x0 ∈ R, then −A = {x ∈ R : −x ∈ A}, α · A = {α · x ∈ R : x ∈ A},
A′ = R \ A and A − x0 = {x ∈ R : x + x0 ∈ A}. For each x ∈ R+, let

[x] = max{n ∈ N ∪ {0} : n ≤ x }.
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De�nition 1. [1] We say that 0 is a point of I-density of a set A ∈ S if for

each increasing sequence of positive integers {nm}m∈N there exists a subse-

quence {nmp}p∈N such that

{x : χnmp ·A∩[−1,1](x) �−→ 1} ∈ I.

A point x0 is a point of I-density of a set A ∈ S if 0 is a point of I-density
of the set A− x0. A point x0 is a point of I-dispersion of a set A ∈ I if x0 is

a point of I-density of the set R \A.

Let

Φ(A) = {x ∈ 2 : x is I-density point of A}
for A ∈ S, and TI = {A ∈ S : A ⊂ Φ(A)}. We recall the following theorems.

Theorem 1. [1] 0 is a point of I-density of a set A ∈ S if and only if for each

sequence {tn}n∈N
⊂ R+ such that limn→∞ tn = +∞ there exists a subsequence

{tnk
}k∈N

such that

{x ∈ [−1, 1] : χtnk
·A∩[−1,1](x) �−→ 1} ∈ I.

Theorem 2. [1] For any A ∈ S and B ∈ S,

i) if A ⊂ B, then Φ(A) ⊂ Φ(B),

ii) Φ(∅) = ∅, Φ(R) = R,

iii) if A ∼ B, then Φ(A) = Φ(B),

iv) Φ(A ∩B) = Φ(A) ∩ Φ(B),

v) A ∼ Φ(A).

Theorem 3. [1] TI is a topology on the real line stronger than the Euclidean

topology.

De�nition 2. Let ψ ∈ C.

I. We say that 0 is a point of right-hand ψI-dispersion of a set A from S
if for each sequence {(hn,mn)}n∈N with the following properties

• {(hn,mn)}n∈N ⊂ R+ × (N ∪ {0}),
• the sequence {hn}n∈N

is decreasing,

• lim
n→∞hn = 0,

• for each n ∈ N, mn ∈ {0, . . . ,
[

1
ψ(hn)

]
− 1}
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there exists a subsequence {(hnk
,mnk

)}k∈N
such that

{x ∈ [0, 1]; χAk
(x) �−→ 0} ∈ I,

where

Ak =
(

1
hnk

ψ(hnk
)
· A−mnk

)
∩ [0, 1].

II. We say that 0 is a point of left-hand ψI-dispersion of a set A ∈ S if 0

is a right-hand point of ψI-dispersion of the set −A.

III. We say that 0 is a point of ψI-dispersion of a set A ∈ S if 0 is a point

of right-hand and left-hand ψI-dispersion of the set A.

IV. We say that x0 ∈ R is a point of ψI-dispersion of a set A ∈ S if 0 is

a point of ψI-dispersion of the set A− x0.

V. We say that x0 ∈ R is a point of ψI-density of a set A ∈ S if x0 is

a point of ψI-dispersion of the set R \ A.

Lemma 1. Let ψ ∈ C and {(an, bn)}n∈N be a sequence of open intervals such

that lim
n→∞ bn = 0 and, for each n ∈ N,

i) 0 < an+1 < bn+1 < an,

ii) bn+1 ≤ bnψ(bn),

iii) bn − an ≤ bnψ(bn).

Let G =
∞⋃
n=1

(an, bn). Then, for each sequence of positive real numbers {hn}n∈N

such that lim
n→∞hn = 0 there exists a subsequence {hnk

}k∈N
satisfying the con-

dition {
x ∈ [0, 1] : χ 1

hnk
·G∩[0,1](x) �−→ 0

}
∈ I.

Proof. Let {hn}n∈N
be an arbitrary sequence of positive real numbers such

that lim
n→∞hn = 0. We can assume that, for each n ∈ N, there exists pn ∈ N

such that

bpn+1 < hn ≤ bpn .
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We shall consider two cases.

a) There exists positive integer n0 such that, for each n ≥ n0,

bpn+1 ≤ hn ≤ apn .

Assume that n0 = 1. We consider a sequence
{

1
hn
· bpn+1

}
n∈N

. Then there

exist α ∈ [0, 1] and an increasing sequence of positive integers {nk}k∈N such

that

lim
k→∞

1
hnk

· bpnk
+1 = α.

Hence

0 ≤ lim
k→∞

1
hnk

·
(
bpnk

+1 − apnk
+1

)
≤ lim

k→∞
1
hnk

· bpnk
+1 · ψ(bpnk

+1) = 0

and

lim
k→∞

1
hnk

· apnk
+1 = α.

By the above and

0 ≤ lim
k→∞

1
hnk

· bpnk
+2 ≤ lim

k→∞
1
hnk

· bpnk
+1 · ψ(bpnk

+1) = 0,

we infer that {
x ∈ [0, 1] : χ 1

hnk
·G∩[0,1](x) �−→ 0

}
⊂ {0, α, 1}.

b) Now we assume that, for each n ∈ N, there exists kn ∈ N, kn ≥ n such

that

apnk
< hkn < bpnk

.

Then

1 ≤ lim
k→∞

1
hkn

· bpnk
≤ lim

k→∞
1

apnk

· bpnk
≤ lim

k→∞
1

bpnk
(1− ψ(bpnk

))
· bpnk

= 1

and

lim
k→∞

1
hkn

·
(
bpnk

− apnk

)
≤ lim

k→∞
1
hkn

bpnk
ψ(bpnk

) = 0.

Hence

lim
k→∞

1
hkn

· apnk
= 1.
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Additionaly

lim
k→∞

1
hkn

· bpnk
+1 ≤ lim

k→∞
1
hkn

· bpnk
ψ(bpnk

) = 0,

therefore {
x ∈ [0, 1] : χ 1

hnk
·G∩[0,1](x) �−→ 0

}
⊂ {0, 1}. ✷

Theorem 4. Let ψ ∈ C. If 0 is a point of right-hand ψI�dispersion of a set

A ∈ S, then it is a point of a right-hand I-dispersion of the set A.

Proof. Let {tn}n∈N be a decreasing sequence of positive real numbers such

that lim
n→∞ tn = 0. We may assume that, for each n ∈ N, there exists a positive

hn such that

tn = hnψ(hn).

Then lim
n→∞hn = 0. Let, for each n ∈ N, mn = 0.

The sequence {(hn,mn)}n∈N satis�es the conditions of De�nition 2, there-

fore there exists a sequence {(hnk
,mnk

)}k∈N such that

lim sup
k→∞

(
1

hnk
ψ(hnk

)
·A−mnk

)
∩ [0, 1] ∈ I.

By

lim sup
k→∞

(
1

hnk
ψ(hnk

)
·A−mnk

)
∩ [0, 1] = lim sup

k→∞

(
1
tnk

·A
)
∩ [0, 1],

the proof is complete. ✷

Theorem 5. Let ψ ∈ C. There exists an open set G such that 0 is a point

of right-hand I-dispersion of the set G and 0 is not a point of right-hand

ψI-dispersion of the set G.

Proof. We shall de�ne a sequence of open intervals {(an, bn)}n∈N
such that

i) 0 < an+1 < bn+1 < an,

ii) bn+1 < min{ 1
n , bnψ(bn)},

iii) bn − an = bnψ(bn),

iv) 1
ψ(bn) ∈ N

for each n ∈ N.
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Let b1 be a positive real number such that ψ(b1) ∈
{

1
2 ,

1
3 , ...

}
. Let n ∈ N.

Assume that we have de�ned positive real numbers b1, ..., bn. Now we shall

de�ne a positive bn+1 ful�lling the following properties:

ψ(bn+1) ∈
{
1
2
,
1
3
, ...

}
and bn+1 < min

{
1
n
, bnψ(bn)

}
.

For each n ∈ N, we put an = bn − bnψ(bn). Then, for each n ∈ N,

an−1 = bn−1(1− ψ(bn−1)) ≥ bn−1 ·
1
2
≥ bn−1 · ψ(bn−1) > bn.

Set G =
∞⋃
n=1

(an, bn).

By Lemma 1, 0 is a point of right-hand I-dispersion of the set G. Now we

prove that 0 is not a point of right-hand ψI-dispersion of the set G.

Let {(hn,mn)}n∈N be a sequence such that hn = bn, mn =
[

1
ψ(hn)

]
− 1

for each n ∈ N, and let {(hnk
,mnk

)}k∈N be an arbitrary subsequence of

{(hn,mn)}n∈N. We shall show that

(0, 1) ⊂ lim sup
k→∞

(
1

hnk
ψ(hnk

)
·G−mnk

)
.

Let k ∈ N. Then

1
hnk

ψ(hnk
)
·G−mnk

⊃ 1
hnk

ψ(hnk
)
· (ank

, bnk
)−mnk

=

(
1

bnk
ψ(bnk

)
(bnk

− bnk
ψ(bnk

))−
[

1
ψ(bnk

)

]
+ 1,

1
bnk

ψ(bnk
)
· bnk

−
[

1
ψ(bnk

)

]
+ 1

)
=

=
(

1
ψ(bnk

)
(1− ψ(bnk

))− 1
ψ(bnk

)
+ 1,

1
ψ(bnk

)
− 1
ψ(bnk

)
+ 1

)
= (0, 1).

By the above, 0 is not a point of right-hand ψI -dispersion of the set G. ✷

Theorem 6. Let ψ ∈ C. There exists an open set G such that 0 is an accu-

mulation point of the set G and 0 is a point of right-hand ψI-dispersion of the

set G.

Proof. We de�ne sequences of real positive numbers {an}n∈N
and {bn}n∈N

such that
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1) bn+1 ≤ 1
nanψ(an),

2) 0 < bn − an ≤ 1
nanψ(an),

for each n ∈ N, and

3) lim
n→∞an = lim

n→∞ bn = 0.

Let b1 be an arbitrary real positive number. Let n ∈ N. Assume that we

have de�ned numbers b1, ..., bn−1 and a1, ..., an−1. Let bn be a real positive

number such that bn ≤ 1
n−1an−1ψ(an−1). By the continuity of a function

g(x) = x + 1
nxψ(x) and by bn < bn + 1

nbnψ(bn), there exists an such that

an < bn and an + 1
nanψ(an) = bn.

Set G =
∞⋃
n=1

(an, bn). We shall show that 0 is a point of right-hand

ψI -dispersion of G. Let {(hn,mn)}n∈N be an arbitrary sequence satisfying

the conditions of De�nition 2. We consider the following possibilities:

a) Assume that there exists a subsequence {(hnk
,mnk

)}k∈N such that for each

k ∈ N, mnk
= 0. Then, in view of Lemma 1, 0 is a point of a right-hand

I�dispersion of G. Since lim
k→∞

hnk
ψ (hnk

) = 0, we may choose a subsequence{
hnkp

}
p∈N

such that

lim sup
p→∞

(
1

hnkp
ψ(hnkp

)
G−mnkp

)
∩ [0, 1]=lim sup

p→∞
1

hnkp
ψ(hnkp

)
·G ∩ [0, 1] ∈ I.

b) Assume that there exists a subsequence {(hnk
,mnk

)}k∈N such that

[mnk
hnk

ψ(hnk
), (mnk

+ 1)hnk
ψ(hnk

)] ∩G = ∅

for each k ∈ N.

Then, for each k ∈ N,
(

1
hnk

ψ(hnk
) ·G−mnk

)
∩ [0, 1] = ∅. Hence

lim sup
k→∞

(
1

hnk
ψ(hnk

)
·G−mnk

)
∩ [0, 1] = ∅.

c) If none of the cases a) and b) is true, then there exists n0 ∈ N such that

for each n ≥ n0, mn ≥ 1 and

[mnhnψ(hn), (mn + 1)hnψ(hn)] ∩G �= ∅.

We can assume that for each n ∈ N there exists rn ∈ N, rn > 1 such that

[mnhnψ(hn), (mn + 1)hnψ(hn)] ∩ (arn , brn) �= ∅.
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Therefore

arn ≤ (mn + 1)hnψ(hn) ≤
[

1
ψ(hn)

]
hnψ(hn) ≤ hn

and, by

brn+1 ≤
1
rn
arnψ(arn) ≤ 1 · hnψ(hn) ≤ mnhnψ(hn),

we have

[mnhnψ(hn), (mn + 1)hnψ(hn)] ∩
∞⋃

j=rn+1

(aj , bj) = ∅.

Additionaly, by arn−1 > hn,

[mnhnψ(hn), (mn + 1)hnψ(hn)] ∩
rn−1⋃
j=1

(aj , bj) = ∅.

Let n ∈ N and

xn ∈ [mnhnψ(hn), (mn + 1)hnψ(hn)] ∩ (arn , brn).

Then 1
hnψ(hn) ·xn−mn ∈ [0, 1], for all n ∈ N. Thus, there exists α ∈ [0, 1] and

a subsequence

{
1

hnk
ψ(hnk)

xnk
−mnk

}
k∈N

such that

lim
k→∞

(
1

hnk
ψ (hnk

)
xnk

−mnk

)
= α.

By

0 ≤ lim
k→∞

1
hnk

ψ(hnk
)
· (brnk

− arnk
)

≤ lim
k→∞

1
hnk

ψ(hnk
)
· 1
rnk

· arnk
ψ(arnk

)

≤ lim
k→∞

1
hnk

ψ(hnk
)
· 1
rnk

· hnk
ψ(hnk

)

= lim
k→∞

1
rnk

= 0,

we infer that

lim
k→∞

(
1

hnk
ψ(hnk

)
brnk

−mnk

)
= α
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and

lim
k→∞

(
1

hnk
ψ(hnk

)
arnk

−mnk

)
= α.

Thus

lim sup
k→∞

(
1

hnk
ψ(hnk

)
·G−mnk

)
∩ [0, 1] ⊂ {α}. ✷

Theorem 7. Let ψ1 ∈ C. There exist a function ψ2 ∈ C and an open set G
such that 0 is a point of right-hand ψ1,I-dispersion of the set G, but 0 is not

a point of right-hand ψ2,I-dispersion of the set G.

Proof. We de�ne a sequence of open intevals {(an, bn)}n∈N
such that

1) 0 < an+1 < bn+1 < an,

2) bn+1 ≤ 1
nanψ1(an),

3) bn − an ≤ 1
nanψ1(an),

4) bn−an
bn

< bn−1−an−1

bn−1
,

5) bn
bn−an

∈ N,

for each n ∈ N, and

6) lim
n→∞ bn = 0.

Let b1 ∈ (0, 1) and k ∈ N \ {1}. Assume that we have de�ned numbers

a1, ..., ak−1 and b1, ..., bk−1. Let bk be an arbitrary positive number such that

bk ≤ 1
k−1ak−1ψ1(ak−1).

We consider two functions: g(x) = x+ 1
kxψ1(x) and h(x) = 1− x

bk
. Since

g(bk) = bk + 1
k bkψ1(bk) > bk, therefore, by continuity of a function g, we have

α ∈ (0, bk) such that g(α) = bk and, for each x ∈ (α, bk), g(x) > bk. Let p be

a positive integer such that

1
p
< min

{
bk−1 − ak−1

bk−1
, h(α)

}
.

Then

0 = h(bk) <
1
p
< h(α)

and, by continuity of h, we can choose ak ∈ (α, bk) such that h(ak) = 1
p .
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Set G =
∞⋃
n=1

(an, bn). Let ψ2 ∈ C be a function such that, for each n ∈ N,

ψ2(bn) = bn−an
bn

. In a similar way as in Theorem 6, one can prove that 0 is

a point of right-hand ψ1,I -dispersion of the set G.

We shall show that 0 is not a point of right-hand ψ2,I-dispersion of the

set G. Let hn = bn for each n ∈ N and mn = [ 1
ψ2(bn) ] − 1. The sequence

{(hn,mn)}n∈N satis�es the conditions of De�nition 2. Let {(hnk
,mnk

)}n∈N be

an arbitrary subsequence of {(hn,mn)}n∈N. Then, for each k ∈ N,

1
hnk

ψ2(hnk
)
·G−mnk

⊃ 1
hnk

ψ2(hnk
)
· (ank

, bnk
)−mnk

= (0, 1).

Thus

(0, 1) ⊂ lim sup
k→∞

(
1

hnk
ψ2(hnk

)
·G−mnk

)
∩ [0, 1].

De�nition 3. Let ψ ∈ C. For a set A ∈ S, we de�ne Φψ(A) to be the set of

all points of ψI-density of the set A.

Theorem 8. Let ψ ∈ C. Then, for any A,B ∈ S,

1) Φψ(∅) = ∅,Φψ(R) = R,

2) If A ⊂ B, then Φψ(A) ⊂ Φψ(B),

3) If A ∼ B, then Φψ(A) = Φψ(B),

4) Φψ(A ∩B) = Φψ(A) ∩ Φψ(B),

5) A ∼ Φψ(A).

Proof. The conditions 1) and 2) are obvious. Assume that A ∼ B and

x ∈ Φψ(A). Without loss of generality, one can assume that x = 0. We only

show that if 0 is a point of right-hand ψI -dispersion of the set A′, then 0 is

a point of right-hand ψI -dispersion of the set B′.
Let {(hn,mn)}n∈N be an arbitrary sequence which satis�es conditions of

De�nition 2. We observe that

B′ = (B′ ∩A′) ∪ (B′ \A′),

where B′ \ A′ = A \ B ∈ I, and B′ ∩ A′ ⊂ A′. 0 is a point of right-hand

ψI -dispersion of the set A′, thus it is a point of right-hand ψI -dispersion of
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the set A′ ∩ B′. Therefore, there exists a subsequence {(hnk
,mnk

)}k∈N such

that

lim sup
k→∞

(
1

hnk
ψ(hnk

)
· (A′ ∩B′)−mnk

)
∩ [0, 1] ∈ I.

We de�ne the sets P,P1, P2 in the following way:

P = lim sup
k→∞

(
1

hnk
ψ(hnk

)
·B′ −mnk

)
∩ [0, 1],

P1 = lim sup
k→∞

(
1

hnk
ψ(hnk

)
· (A′ ∩B′)−mnk

)
∩ [0, 1],

P2 = lim sup
k→∞

(
1

hnk
ψ(hnk

)
· (B′ \A′)−mnk

)
∩ [0, 1].

Then P ⊂ P1 ∪ P2. The set P1 is of the �rst category, and

P2 =
∞⋂
r=1

∞⋃
k=r

(
1

hnk
ψ(hnk

)
· (B′ \A′)−mnk

)
∩ [0, 1] ∈ I.

Thus P ∈ I.
We have proved that Φψ(A) ⊂ Φψ(B). In a similar way, we can prove that

Φψ(B) ⊂ Φψ(A).
Now we shall show condition 4). Since A∩B ⊂ A and A∩B ⊂ B, therefore,

by condition 2), we have Φψ(A ∩B) ⊂ Φψ(A) ∩Φψ(B).
Let x ∈ Φψ (A) ∩ Φψ (B). We can assume that x = 0. Let {(hn,mn)}n∈N

be an arbitrary sequence which satis�es the conditions of De�nition 2. Since

0 is a point of right-hand ψI -dispersion of the set A′, therefore there exists a
subsequence {(hnk

,mnk
)}k∈N such that

lim sup
k→∞

(
1

hnk
ψ(hnk

)
·A′ −mnk

)
∩ [0, 1] ∈ I.

Additionaly, 0 is a point of right-hand ψI -dispersion of the set B′, thus there
exists a subsequence {(hnkp

,mnkp
)}k∈N, such that

lim sup
k→∞

(
1

hnkp
ψ(hnkp

)
·B′ −mnkp

)
∩ [0, 1] ∈ I.

Then

lim sup
k→∞

(
1

hnkp
ψ(hnkp

)
· (A ∩B)′ −mnkp

)
∩ [0, 1] ⊂ H,
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where

H = lim sup
k→∞

(
1

hnkp
ψ(hnkp

)
· A′ −mnkp

)
∩ [0, 1] ∪

∪ lim sup
k→∞

(
1

hnkp
ψ(hnkp

)
· B′ −mnkp

)
∩ [0, 1] ∈ I.

Hence, 0 is a point of right-hand ψI -dispersion of the set (A ∩ B)′.
In a similar way, we can show that 0 is a point of left-hand ψI -dispersion
of the set (A ∩B)′.

Now we shall show condition 5). Let A ∈ S. Then A = (G \ P1) ∪ P2,
where G is an open set, P1 i P2 are sets of the �rst category and P1 ⊂ G,
P2 ∩G = ∅. By 3), we have Φψ (A) = Φψ (G) and G ⊂ Φψ (G). Thus

A \ Φψ (A) = A \ Φψ (G) ⊂ A \G ∈ I.

By Theorem 4, Φψ (A) ⊂ Φ(A) and by Theorem 2, A ∼ Φ(A), therefore
Φψ (A) \A ⊂ Φ(A) \A ∈ I. ✷

De�nition 4. Let, for ψ ∈ C,

Tψ = {A ∈ S : A ⊂ Φψ (A)} .

By theorems 3, 4, 5 and 8 we have the following

Theorem 9. Let ψ ∈ C. Tψ is a topology on the real line, stronger than the

Euclidean topology and weaker than the I�topology.

Lemma 2. Assume that we have a sequences of real numbers {an}n∈N
and

{bn}n∈N
such that lim

n→∞an = lim
n→∞ bn = 0 and, for each n ∈ N, 0 < bn+1 <

an < bn. Then there exists a function ψ ∈ C such that 0 is not a point of

ψI-dispersion of the set G =
∞⋃
n=1

(an, bn).

Proof. First we de�ne values of the �nction ψ at points of the sequence

{bn}n∈N
. Set ψ(b1) = 1[

b1
b1−a1

]
+1

, a′2 = max {a2, b2(1− ψ(b1))} and

ψ(b2) = 1[
b2

b2−a′2

]
+1
. Assume that for n ∈ N we have de�ned the points

a′1, . . . , a′n and the real numbers ψ(b1), . . . , ψ(bn) in the following way:

• a′i+1 = max
{
ai+1, bi+1(1− 1

iψ(bi))
}
if i ∈ {1, . . . , n− 1},
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• ψ(bi+1) = 1[
bi+1

bi+1−a′
i+1

]
+1

if i ∈ {1, . . . , n− 1}.

Put a′n+1 = max
{
an+1, bn+1(1− 1

nψ(bn))
}
and ψ(bn+1) = 1[

bn+1
bn+1−a′

n+1

]
+1

.

We observe that ψ(bn+1) < 1
nψ(bn). Indeed

1
n
ψ(bn) ≥ 1−

a′n+1

bn+1
=

1
bn+1

bn+1−a′n+1

>
1[

bn+1

bn+1−a′n+1

]
+ 1

= ψ(bn+1).

Let ψ ∈ C be a function such that, for any n ∈ N and x ∈ [an, bn],
ψ(x) = ψ(bn). In a similar way as in Theorem 4, we can show that 0 is

not a point of right-hand ψI -dispersion of the set G. ✷

De�nition 5. We denote by H the Hashimoto topology, where

H = {U \ P : U − an open set , P ∈ I} .

Theorem 10.
⋂
ψ∈C

Tψ = H.

Proof. It is obvious that H ⊂
⋂

ψ∈C Tψ. Let A ∈ S and A /∈ H. Then

A = (G \ P1)∪P2, where G is an open set, P1, P2 ∈ I, P1 ⊂ G and P2∩G = ∅.
Set H = Int(Cl(G)) and R = H \ (G ∪ P2). By A /∈ H, we know that P2

is not a subset of H. It is easy to see that Int (R \H) �= ∅ and the set R \H
has no isolated points.

Let x0 ∈ P2 ∩ (R \H) and {(cn, dn)}n∈N
be a sequence of all components

of the set Int (R \H). We consider the following cases:

a) x0 ∈ Int (R \H). Then, for an arbitrary function ψ ∈ C, x0 is a point

of right-hand ψI-dispersion of the set H. Thus, x0 is a point of right-hand

ψI -dispersion of the set G ⊂ H. Since Φψ (A) = Φψ (G), we have x0 /∈ Φψ (A).
Therefore, A �⊂ Φψ (A), and A /∈ Tψ.

b) There exists n0 ∈ N such that x0 = cn0 or x0 = dn0 . Then x0 is a point

of right-hand or left-hand ψI�density of the set R \H for arbitrary function

ψ ∈ C, respectively, and, as above, x0 ∈ A \ Φψ (A).
c) There exists a sequence {cnk

}k∈N
which converges to x0 from the right or

there exists a sequence {dnk
}k∈N

which converges to x0 from the left. Then,

by Lemma 2, there exists a function ψ ∈ C such that x0 is not a point of

ψI -dispersion of the set

∞⋃
k=1

(cnk
, dnk

). Thus, x0 /∈ Φψ (A) and A /∈ Tψ. There-

fore, A /∈
⋂
ψ∈C

Tψ. ✷
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Abstract. Composite functional equations in several variables generalizing the

Goª¡b�Schinzel equation are considerd and some simple methods allowing us to de-

termine their one-to-one solutions, bijective solutions or the solutions having exactly

one zero are presented. For an arbitrarily �xed real p, the functional equation

φ ([p φ(y) + (1 − p)]x+ [(1− p)φ(x) + p ]y) = φ(x)φ(y), x, y ∈ R,

being a special generalization of the Goª¡b�Schinzel equation, is considered.

1. Introduction

Composite functional equations in several variables, i.e. equations involv-

ing the superpositions of unknown functions, represent an important class of

equations. The translation equation (cf. Aczél [1], p. 245),

φ(φ(x, s), t) = φ(x, s + t),

the Goª¡b�Schinzel equation ([2], see also [1], pp. 311�312)

φ(x+ yφ(x)) = φ(x)φ(y), (1)
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or the equation [3]

φ(x+ yφ(x)) + φ(x− yφ(x)) = 2φ(x)φ(y), (2)

are the examples. In section 1, we consider more general functional equations

than (1) and (2) and give some conditions allowing us to determine their one-

to-one solutions, bijective solutions or the solutions having exactly one zero.

In section 2, for an arbitrarily �xed real p, we deal with the functional equation

φ ([p φ(y) + (1− p)]x+ [(1− p)φ(x) + p ]y) = φ(x)φ(y), x, y ∈ R,

being a special generalization of equation (1).

2. Main result

Let X be a set. For a function φ : X → X and a positive integer number k,
by the symbol φk we denote the kth iteration of the function φ.

The following result reduces the problem of determining the solutions of

a functional equation of a composite type to an application of the implicit

function theorem.

Theorem 1. Let m, n ∈ N be �xed. Let I, I1 ⊆ R be intervals such that

0 ∈ I1 and I1 ⊂ I. Let G : (I × I1)2 �→ I and H : (I × In1 )× (I × Im1 ) �−→ I1.
Suppose that for all x, y ∈ I; x1, . . . , xn, y2, . . . , ym ∈ I1,

H(x, x1, x2, . . . , xn, y, 0, y2, . . . , ym) = 0. (3)

If a function φ : I �−→ I1 satis�es the functional equation

φ(G(x, φ(x), y, φ(y)))=H(x, φ(x), φ2 (x), . . . , φn(x), y, φ(y), φ2(y) . . . , φm(y))
(4)

for all x, y ∈ I and there exists exactly one z0 ∈ I such that φ(z0) = 0, then

G(x, φ(x), z0, 0) = z0, x ∈ I.

Proof. Taking y = z0 in equation (4) and applying condition (3), we get

φ(G(x, φ(x), z0, 0)) = 0, x ∈ I.

Since φ has exactly one zero, we obtain G(x, φ(x), z0, 0) = z0 for all x ∈ I.
This completes the proof. �

Remark 1. Equation (4) generalizes the Goª¡b�Schinzel equation (1).



On some generalizations of Goª¡b�Schinzel functional equation 83

In what follows, for p ∈ R and φ : X → (0,∞) the symbol X 5 x→ [φ(x)]p

stands for the superposition of the power function (0,∞) 5 u→ up and φ.

Now we present some applications of Theorem 1.

Corollary 1. Let k, l ∈ N be �xed and let φ : R �−→ R be a function with

exactly one zero point. Then φ satis�es the functional equation

φ
(
x+ y[φ(x)]

2k−1
2l−1

)
= φ(x)φ(y), x, y ∈ R, (5)

if and only if for some c ∈ R, c �= 0,

φ(x) = (cx+ 1)
2l−1
2k−1 , x ∈ R . (6)

Proof. In Theorem 1 take I = I1 = R , n = m = 1 and de�ne

G : R4 �−→ R by

G(x, x1, y, y1) := x+ y(x1)
2k−1
2l−1 , x, x1, y , y1 ∈ R,

and H : R4 �−→ R by

H(x, x1, y, y1) := x1y1, x, x1, y, y1 ∈ R.

Suppose that φ : R → R satis�es equation (5) and has exactly one zero z0 ∈ R.

Since H(x, x1, z0, 0) = 0 for all x, x1 ∈ R, the assumptions of Theorem 1 are

ful�lled. From (5), applying Theorem 1, we get

G(x, φ(x), z0 , 0) = z0, x ∈ R,

that is

x+ z0[φ(x)]
2k−1
2l−1 = z0, x ∈ R,

whence z0 �= 0 and

φ(x) =
(
1− x

z0

) 2l−1
2k−1

, x ∈ R.

Putting here c := − 1
z0
, we obtain (6). Since φ given by (6) satis�es equation

(5), the proof is completed. �

Remark 2. It is known that (cf. [1], pp. 132-133) if φ : R �−→ R is a con-

tinuous solution of the Goª¡b�Schinzel equation

φ(x+ yφ(x)) = φ(x)φ(y), x, y ∈ R,
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then there exists c ∈ R \ {0} such that either

φ(x) = sup{cx+ 1, 0}, x ∈ R,

or there exists c ∈ R such that

φ(x) = cx+ 1, x ∈ R, (7)

or

φ(x) = 0, x ∈ R.

The second solution can be obtained from Corollary 1 in a di�erent way.

Taking k = l in the equation (5) and applying Corollary 1, we obtain (7) as a

only solution having only zero in R.

Corollary 2. Let a < 0 and p ∈ R, p > 0, be �xed. Suppose that

φ : [a,∞) �−→ [0,∞) has exactly one zero in [a,∞). A function φ satis�es the

functional equation

φ (x+ y[φ(x)]p) = φ(x)φ(y), x ≥ a, y ≥ 0, (8)

if and only if

φ(x) =
(
1− x

a

) 1
p
, x ≥ a. (9)

Proof. Suppose that φ : [a,∞) �−→ [0,∞) satis�es equation (8) and z0 ≥ a
is the only zero of φ. In Theorem 1 take n = m = 1, I := [a,∞), I1 := [0,∞),
the function G : (I × I1)2 �−→ I de�ned by

G(x, x1, y, y1) := x+ y(x1)p, x, y ∈ I, x1, y1 ∈ I1,

and the function H : (I × I1)2 �−→ I1 de�ned by

H(x, x1, y, y1) := x1y1, x, y ∈ I, x1, y1 ∈ I1.

Since H(x, x1, y, 0) = 0, for all x, y ∈ I, x1 ∈ I1, the assumptions of Theo-

rem 1 are satis�ed. Therefore

G(x, φ(x), z0, 0) = z0, x ∈ I,

so x+ z0[φ(x)]p = z0 for all x ≥ a. It follows that z0 �= 0 and, consequently,

φ(x) = (1− x

z0
)

1
p , x ≥ a.

Since φ is non�negative, we have 1− x
z0
≥ 0 for all x ∈ [a,∞). Thus z0 = a.

Since the converse implication is easy to verify, the proof is completed. �
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Remark 3. Note that for p = 0 equation (8) in Corollary 2 becomes the

Cauchy functional equation.

Theorem 2. Let n ∈ N be �xed. Let I, I1 be intervals such that I1 ⊂ I ⊆ R.

Let G : (I × I1)2 �−→ I and H : (I × In1 )
2 �−→ I1 be given functions. Suppose

that H is symmetric, that is

H(x, x1, x2, . . . , xn, y, y1, y2, . . . , yn) = H(y, y1, y2, . . . , yn, x, x1, x2, . . . , xn)
(10)

for all x, y ∈ I, x1, x2, . . . , xn, y1, y2, . . . , yn ∈ I1.
If φ : I �−→ I1 is a solution of the functional equation

φ(G(x, φ(x), y, φ(y))) = H(x, φ(x), φ2(x), . . . , φn(x), y, φ(y), φ2(y) . . . , φn(y))
(11)

for all x, y ∈ I, then

φ(G(x, φ(x), y, φ(y))) = φ(G(y, φ(y), x, φ(x))), x, y ∈ I.

If, moreover φ is one-to-one function, then

G(x, φ(x), y, φ(y)) = G(y, φ(y), x, φ(x)), x, y ∈ I. (12)

Proof. Suppose that φ : I �−→ I1 satis�es Eq. (11) andH : (I×In1 )2 �−→ I1
satis�es condition (10). Then for all x, y ∈ I we have

φ(G(x, φ(x), y, φ(y))) = H(x, φ(x), φ2(x), . . . , φn(x), y, φ(y), φ2(y) . . . , φn(y))

= H(y, φ(y), φ2(y), . . . , φn(y), x, φ(x), φ2(x) . . . , φn(x))

= φ(G(y, φ(y), x, φ(x))),

so,

φ(G(x, φ(x), y, φ(y))) = φ(G(y, φ(y), x, φ(x))), x, y ∈ I.

If φ is one-to-one, then obviously equality (12) holds true.

Remark 4. If the function G in Theorem 2 is not symmetric, then in general

equality (12) allows us to obtain the one-to-one solutions of (11).

Applying Theorem 2 we obtain
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Corollary 3. Let a, p ∈ R be �xed and such that a < 0, p �= 0. A one-to-one

function φ : (a,∞) �−→ (0,∞) satis�es the functional equation

φ (x+ y[φ(x)]p) = φ(x)φ(y) , x > a, y ≥ 0, (13)

if, and only if,

φ(x) =
(
1− x

a

) 1
p
, x > a. (14)

Proof. In Theorem 2 take n = 1, I = (a,∞), I1 = (0,∞), the function

G : (I × I1)2 �−→ I de�ned by

G(x, x1, y, y1) := x+ y(x1)p, x, y ∈ I, x1, y1 ∈ I1,

and H : (I × I1)2 �−→ I1 de�ned by

H(x, x1, y, y1) := x1y1 x, y ∈ I, x1, y1 ∈ I1,

Since

H(x, x1, y, y1) = H(y, y1, x, x1), x, y ∈ I, x1, y1 ∈ I1,

the assumptions of Theorem 2 are satis�ed. Applying Theorem 2, we have

from (12):

x+ y[φ(x)]p = y + x[φ(y)]p, x, y ∈ I,

whence

[φ(x)]p − 1
x

=
[φ(y)]p − 1

y
, x, y ∈ I, x, y �= 0.

So, there exists a constant c ∈ R \ {0} such that

x−1([φ(x)]p − 1) = c

for all x ∈ I, x �= 0. Hence

φ(x) = (cx+ 1)
1
p , x > a, x �= 0.

Equation (13) implies that

cx+ 1 > 0, x > a,
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and, consequently, ca+1 ≥ 0. On the other hand, if φ satis�es equation (13),

then obviously the following inequality

x+ y[(cx+ 1)
1
p ]p > a, x, y > a,

is true, which means that

x+ y[(cx+ 1)] > a, x, y > a.

It follows that a + ca2 + a ≥ a, so ca+ 1 ≤ 0. Both inequalities imply that

ca+ 1 = 0, whence c = − 1
a , and φ has to be of the form (14).

To show that the function φ given by (14) satis�es equation (13), let us

note that

x+ y[φ(x)]p > a, x, y > a.

In fact, this inequality is equivalent to (x− a)(y − a) > 0. Now, it is easy to

verify that (14) satis�es equation (13). This completes the proof. �

Remark 5. Taking a, p ∈ R, a < 0 , and p > 0, we can show in the same way

that the one�to�one function φ : [a,+∞) �−→ [0,+∞) satis�es the functional

equation

φ (x+ y[φ(x)]p) = φ(x)φ(y), x, y ≥ a,

if and only if

φ(x) =
(
1− x

a

) 1
p
, x ≥ a.

Remark 6. Let I, I1 ⊆ R be intervals. Let G : (I × I1)2 �−→ I and

H : I1×I1 �−→ I1 be the given functions. Assume that φ : I �−→ I1, φ(I) = I1
is a bijective solution of the functional equation

φ(G(x, φ(x), y, φ(y))) = H(φ(x), φ(y)), x, y ∈ I. (15)

Then the function φ−1 : I1 �−→ I satis�es the (non-composite) functional

equation

G(φ−1(x), x, φ−1(y), y) = φ−1(H(x, y)), x, y ∈ I1. (16)

In fact, putting φ−1(x) in place of x and φ−1(y) in place of y in equation

(15), we obtain (16).

Sometimes the above remark allows us to determine e�ectively the bijective

solutions for functional equations of form (15). We have the following
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Corollary 4. Let k, l ∈ N be �xed and let I = I1 = R. The bijection function

φ : R �−→ R satis�es functional equation

φ
(
x+ y[φ(x)]

2k−1
2l−1

)
= φ(x)φ(y), x, y ∈ R, (17)

if and only if

φ(x) = (cx+ 1)
2l−1
2k−1 , x ∈ R, (18)

for some c ∈ R, c �= 0.

Proof. According to Remark 6, a bijection φ : R �→ R satis�es equation

(17) if and only if φ−1 : R �→ R satis�es the equation

φ−1(x) + φ−1(y)x
2k−1
2l−1 = φ−1(xy), x, y ∈ R.

Putting here y = 0, we obtain

φ−1(x) = φ−1(0)
(
1− x

2k−1
2l−1

)
, x ∈ R,

which implies (18). �

3. A special generalization of Goª¡b�Schinzel
functional equation

In this section we examine the functional equation

φ ([p φ(y) + (1− p)]x+ [(1− p)φ(x) + p ]y) = φ(x)φ(y), x, y ∈ R, (19)

where p ∈ R is an arbitrarily �xed parameter. For p = 0 or p = 1 it reduces

to the classical Goª¡b�Schinzel equation.

Theorem 3. Let p ∈ R be �xed.

1. If p �= 1
2 , then the one-to-one function φ : R �−→ R satis�es (19) if and

only if

φ(x) = cx+ 1, x ∈ R,

for some c ∈ R \ {0}.

2. If p = 1
2 , then bijection φ : R �−→ R satis�es (19) if and only if

φ(x) = cx+ 1, x ∈ R,

for some c ∈ R \ {0}.
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Proof. Take n = 1, I = R and de�ne G : (R× R)2 �−→ R by

G(x, x1, y, y1) := [py1 + (1− p)]x+ [(1− p)x1 + p]y, x, y, x1, y1 ∈ R,

and H : (R× R)2 �−→ R by

H(x, x1, y, y1) := x1y1, x, y, x1, y1 ∈ R.

Note, that

H(x, x1, y, y1) = H(y, y1, x, x1), x, y, x1, y1 ∈ R.

Applying Theorem 2, we obtain

[pφ(y) + (1− p)]x+ [(1− p)φ(x) + p]y

= [pφ(x) + (1− p)]y + [(1− p)φ(y) + p]x

for all x, y ∈ R , whence

(2p − 1)[x(φ(y) − 1)] = (2p− 1)[y(φ(x) − 1)] , x, y ∈ R.

If p �= 1
2 , hence we get

φ(x) − 1
x

=
φ(y)− 1

y
, x, y ∈ R \ {0}.

Therefore, there exists a constant c ∈ R \ {0} such that φ(x) = cx+ 1 for all

x ∈ R \ {0}. Putting x = y = 0 in equation (19), we get [φ(0)] = [φ(0)]2,
consequently we obtain either φ(0) = 0 or φ(0) = 1. Since φ is one�to�one

and φ(−1
c ) = 0, the case φ(0) = 0 cannot occur. Thus φ(x) = cx+1 for all

x ∈ R.
For p = 1

2 equation (19) has the form:

φ

(
1
2
[x(φ(y) + 1) + y(φ(x) + 1)]

)
= φ(x)φ(y), x, y ∈ R. (20)

If a bijection φ : R �−→ R satis�es (20), then according to the Remark 2 the

function φ−1 : R �−→ R satis�es the equation

2φ−1(xy) = (y + 1)φ−1(x) + (x+ 1)φ−1(y), x, y ∈ R.

Putting here y = 0 , we get

2φ−1(0) = φ−1(x) + (x+ 1)φ−1(0), x ∈ R.
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Hence, as φ−1(0) �= 0,

φ−1(x) = φ−1(0)(1 − x), x ∈ R,

whence

φ(x) = 1− 1
φ−1(0)

x, x ∈ R. �

Theorem 4. Let p ∈ R be �xed. A function φ : R �−→ R satis�es equation

(19) and has exactly one zero if and only if there exists a constant c ∈ R \ {0}
such that

φ(x) = cx+ 1, x ∈ R.

Proof. Note that substitution of (1 − p) for p in equation (19) gives

the same equation. Thus, without any loss of generality, we can assume that

p �= 1. Take n = m = 1, I = I1 = R, and de�ne H : (R× R)2 �→ R by

H(x, x1, y, y1) := x1y1, x, x1, y, y1 ∈ R, (21)

and G : (R× R)2 �→ R by

G(x, x1, y, y1) := [py1 + (1− p)]x+ [(1− p)x1 + p]y, x, x1, y, y1 ∈ R.

Suppose that φ : R → R satis�es equation (19) and z0 �= 0 is a unique zero

of φ. Note that if y = z0, then H(x, x1, z0, 0) = 0 for all x, x1 ∈ R, so the

function (21) satis�es the condition (3) of Theorem 1. Therefore, if φ satis�es

equation (19), then

(1− p)x+ [(1− p)φ(x) + p]z0 = z0, x ∈ R.

Hence we obtain φ(x) = 1− x
z0

for all x ∈ R. �
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Abstract. It is known that every locally de�ned operator acting between two Hölder

spaces is a Nemytskii superposition operator. We show that if such an operator is

bounded in the sense of the norm, then its generator is continuous.

1. Introduction

Let I ⊂ R be an arbitrary interval and by RI we denote the set of all functions

ϕ : I → R. For a given two-place function h : I × R → R, the mapping

K : RI → RI de�ned by

K(ϕ)(x) := h(x, ϕ(x)), ϕ ∈ RI , x ∈ I,

is called a Nemytskii superposition operator of the generator h.
It is known that every locally de�ned operator mapping the set of con-

tinuous functions C(I,R) into itself must be a superposition operator [2].

Moreover, K maps C(I,R) into itself if and only if its generator h is contin-

uous. At this background it is surprising enough that there are discontinuous
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functions h : I × R → R generating the superpositions operators K which

map the space of continuously di�erentiable functions C1(I,R) into itself (cf.

[1, p. 209]). In [3] it has been proved that if a locally de�ned operator maps

the Banach space Hφ(I,R) of all Hölder functions ϕ : I → R into Hψ(I,R),
then it is a Nemytskii superposition operator. The purpose of this paper is to

show that if, additionally, K is bounded with respect to Hφ(I,R)�norm, then

its generator must be continuous.

2. Main result

Let φ : (0,∞) → (0,∞) satisfy the following condition:

(i) φ is strictly increasing, φ(0+) := lim
t→0+

φ(t) = 0 and the function

(0,∞) 5 t→ φ(t)
t

is decreasing.

Let us note the following (easy to verify)

Remark 1. If φ : (0,∞) → (0,∞) satis�es condition (i), then φ is subad-

ditive and continuous.

Let I ⊂ R be an interval and let x0 ∈ I be arbitrarily �xed. For a given

φ : (0,∞) → (0,∞), having the above properties, by Hφ(I,R) we denote the
Banach space of all Hölder functions ϕ : I → R equipped with the norm

‖ϕ‖φ := |ϕ(x0)|+ sup
x,y∈I,x �=y

|ϕ(x) − ϕ(y)|
φ(|x− y|) .

Clearly, ϕ ∈ Hφ(I,R) if and only if there exists a constant c > 0 such that

|ϕ(x) − ϕ(y)| ≤ cφ(|x − y|), x, y ∈ I.

Let us notice that if φ(t) = tα for some α ∈ (0, 1], then Hα(I,R) :=
Hφ(I,R) is the classical Hölder functions space and H1(I,R) becomes the

Banach space of Lipschitz functions.

De�nition. Let φ,ψ : (0,∞) → (0,∞) satisfy condition (i). An operator

K : Hφ(I,R) → Hψ(I,R) is said to be locally de�ned if for any open interval

J ⊂ R and for any functions ϕ,ψ ∈ Hφ(I,R),

ϕ
∣∣
J∩I = ψ

∣∣
J∩I ⇒ K(ϕ)

∣∣
J∩I = K(ψ)

∣∣
J∩I ,

where φ
∣∣
J∩I denotes the restriction of ϕ to J ∩ I.
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In [3] the following result was proved:

Theorem 1. ([3], Corollary 2). Let I ⊂ R be an interval. If a locally

de�ned operator K maps Hφ(I,R) into Hψ(I,R), then there exists a unique

function h : I × R → R such that

K(ϕ)(x) = h(x, ϕ(x)), (x ∈ I),

for all ϕ ∈ Hφ(I,R), that is K is a Nemytskii operator of the generator h.

We say that an operator K : Hφ(I,R) → Hψ(I,R) is bounded if it maps

the convergent sequences of Hφ(I,R) into bounded sequences in Hψ(I,R).

The main result reads as follows:

Theorem 2. Let I ⊂ R be an interval. If a locally de�ned operator

K : Hφ(I,R) → Hψ(I,R) is bounded, then there exists a continuous function

h : I × R → R such that

K(ϕ)(x) = h(x, ϕ(x)); ϕ ∈ Hφ(I,R), (x ∈ I).

Proof. By Theorem 1, there exists a function h : I×R → R such that the

formula of our result holds true. We shall show that h is continuous.

Without any loss of generality we can assume that I = [a, b), where

0 < b ≤ +∞, and that

‖ϕ‖φ := |ϕ(a)| + sup
x,y∈I,x �=y

|ϕ(x) − ϕ(y)|
φ(|x− y|) .

First we show that h is continuous with respect to the second variable. To

this end let us �x (x0, y0) ∈ I and choose arbitrarily a real sequence (yn)n∈N

such that

yn �= y0, n ∈ N, lim
n→∞ yn = y0. (1)

Let (xn)n∈N be a sequence such that xn ∈ I, n ∈ N, and

|xn − x0| = φ−1
(√

|yn − y0|
)
, n ∈ N.

Hence we obtain

|yn − y0|
φ(|xn − x0|)

=
|yn − y0|

φ
(
φ−1

(√
|yn − y0|

)) =
√
|yn − y0|, n ∈ N. (2)

De�ne the functions Pyn : I → R, ϕn : I → R, n ∈ N, by the following

formulas:

Pyn(x) := yn, n ∈ N, (3)



94 Janusz Matkowski, Maªgorzata Wróbel

ϕn(x) =


y0, for x ∈ [a, x0],
yn − y0

xn − x0
(x− x0) + y0 for x ∈ (x0, xn), n ∈ N,

yn, for x ∈ [xn, b).

(4)

and put

ϕ0(x) = y0, x ∈ I.
Of course,

Pyn , ϕn ∈ Hφ(I,R), n ∈ N.

Since

‖Pyn − ϕ0‖φ = |yn − y0|, n ∈ N,

applying (1) and (2), we get

lim
n→∞ ‖Pyn − ϕ0‖φ = 0, lim

n→∞ ‖ϕn − ϕ0‖φ = 0. (5)

Making use of (3), (4), the triangle inequality and by the de�nition of the

norm, we have

|h(x0, yn)− h(x0, y0)| ≤ |h(xn, yn)− h(x0, yn)|+ |h(xn, yn)− h(x0, y0)|

= |h(xn, Pyn(xn)− h(x0, Pyn(x0)|

+|h(xn, ϕn(xn))− h(x0, ϕn(x0))|

= |K(Pyn)(xn)−K(Pyn)(x0)|

+|K(ϕn)(xn)−K(ϕn)(x0)|

=
|K(Pyn)(xn)−K(Pyn)(x0)|

ψ(|xn − x0|)
ψ(|xn − x0|)+

+
|K(ϕn)(xn)−K(ϕn)(x0)

ψ(|xn − x0|)
ψ(|xn − x0|)

≤ ‖K(Pyn)‖ψψ(|xn−x0|)+‖K(ϕn)‖ψ ·ψ(|xn−x0|).

Taking into account (5), the equality ψ(0+) = 0, the boundedness of the

operator K and letting n tend to the in�nity, we get the continuity of h with

respect to the second variable.

To show that h is continuous �x (x0, y0) ∈ I × R, take two arbitrary se-

quences xn ∈ I, yn ∈ R, n ∈ N, convergent to x0 and y0, respectively, and

de�ne Pyn : I → R, n ∈ N ∪ {0}, by

Pyn(x) = yn, n ∈ N ∪ {0}.
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Hence, by the triangle inequality and by the de�nition of the norm, we have

|h(xn, yn)− h(x0, y0)| ≤ |h(xn, yn)− h(x0, yn)|+ |h(x0, yn)− h(x0, y0)|

= |h(xn, Pyn(xn))− h(x0, Pyn(x0)|

+ |h(x0, yn)− h(x0, y0)|

= |(K(Pyn)(xn)−K(Pyn)(x0)|

+ |h(x0, yn)− h(x0, y0)|

=
|K(Pyn)(xn)−K(Pyn)(x0)|

ψ(|xn − x0|)
· ψ(|xn − x0|)

+ |h(x0, yn)− h(x0, y0)|

≤ ‖K(Pyn)‖ψψ(|xn, x0|) + |h(x0, yn)− h(x0, y0)|.

Since, by the de�nition of Pyn , n ∈ N ∪ {0},

lim
n→∞ ‖Pyn − Py0‖φ = 0,

applying the boundedness of the operator K, the equality ψ(0+) = 0 and

the �rst part of the proof, i.e. the continuity of h with respect to the second

variable, letting n tend to the in�nity, we get the required claim. ✷

Remark 2. Taking in the above theorem a compact interval I ⊂ R, one

gets Theorem 7.3 from [1].

To construct an example showing that the assumption of the boundedness

of K is essential, we need the following

Lemma. Let (X, d), (Y, ρ) be metric spaces. Suppose A,B ⊂ X are closed,

intA ∩ intB = ∅ and adjacent in the following sense: for any x ∈ A, y ∈ B
there exists a point z ∈ δA ∩ δB such that

d(x, y) = d(x, z) + d(z, y). (6)

If the functions f : A→ Y and g : B → Y are Lipschitz continuous and

f(z) = g(z) for all z ∈ δA ∩ δB,
then the function h : (A ∪B)→ Y de�ned by

h(x) :=
{
f(x) for x ∈ A,
g(x) for x ∈ B

is Lipschitz continuous. (Here δA stands for the boundary of A.)



96 Janusz Matkowski, Maªgorzata Wróbel

Proof. Since f and g are Lipschitz continuous, there is c ∈ R+ such that

ρ(f(x), f(y)) ≤ cd(x, y) for x, y ∈ A; ρ(g(x), g(y)) ≤ cd(x, y) for x, y ∈ B.

Take x, y ∈ A ∪ B and assume that x ∈ A and y ∈ B. By assumption, there

is z ∈ δA ∩ δB such that (6) holds. Hence, by the triangle inequality,

ρ(h(x), h(y)) ≤ ρ(h(x), h(z))+ρ(h(z), h(y)) = ρ(f(x), f(z))+ρ(g(z), g(y))

≤ cd(x, z) + cd(z, y) = cd(x, y).

As the remaining two cases are obvious, the proof is complete. ✷

Example. De�ne a two-place function h : [0, 1] × R → R by the formula

h(x, y) :=


0 if y ≤ 0,
y√
x

if 0 < y ≤ √
x,

1 if y >
√
x.

(7)

Observe that h is continuous in [0, 1] × R\{(0, 0)} and discontinuous at the

point (0, 0). In fact we have more, namely outside of any neighbourhood of

(0, 0), by Lemma, the function h is Lipschitzian.

Denote by F [0, 1] the set of all functions ϕ : [0, 1] → R. Let K : F [0, 1] →
F [0, 1] be the Nemytskii composition (so locally de�ned) operator generated

by h, i.e.

K(ϕ)(x) := h(x, ϕ(x)), x ∈ [0, 1].

We shall show that K maps the space H1([0, 1],R) of all Lipschitz continuous
functions ϕ : [0, 1] → R into itself.

Take ϕ ∈ H1([0, 1],R). If ϕ(0) �= 0, then as h is Lipschitz continuous outside
any neighbourhood of (0, 0), the function K(ϕ), as composition of Lipschitz

continuous functions, is Lipschitz continuous in [0, 1], so K(ϕ) ∈ H1([0, 1],R).
If ϕ(0) = 0, then K(ϕ)

∣∣
[ε,1]

is Lipschitz continuous for any ε ∈ (0, 1]. In view

of Lemma, it is enough to show that K(ϕ)
∣∣
[0,ε]

is Lipschitz continuous. To this

end assume that ϕ satis�es the Lipschitz condition with a constant c, that is

|ϕ(x) − ϕ(x)| ≤ c|x− x|, x, x ∈ [0, 1].

Setting x = 0, we hence get

|ϕ(x)| ≤ cx, x ∈ [0, 1],
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so the graph of the function ϕ is contained in the triangle set

D := {(x, y) : x ∈ [0, 1], |y| ≤ cx}.

If ϕ is nonpositive on any subinterval of I ⊂ [0, 1], then, by the de�nition of

h, we have K(ϕ)
∣∣
I
= 0 and, obiously, K(ϕ) is Lipschitz continiuous on I with

zero Lipschitz constant. Therefore, it is enough to con�ne our considerations

to the case when the graph of ϕ
∣∣
[0,ε]

is contained in the set

Dε := {(x, y) : x ∈ [0, ε], 0 ≤ y ≤ cx}.

Let us choose ε > 0 such that c < 1√
ε
. Then, clearly cx <

√
x for all x ∈ (0, ε].

Since for all (x, y) ∈ Dε we have∣∣∣∣ ∂∂xh(x, y)
∣∣∣∣ = ∣∣∣∣− y2

2x
√
x

∣∣∣∣ ≤ (cx)2

2x
√
x
≤ c2

√
ε

2

and ∣∣∣∣ ∂∂yh(x, y)
∣∣∣∣ = 2y√

x
≤ 2cx√

x
≤ 2c

√
ε,

we infer that h
∣∣
Dε

is Lipschitz continuous. It follows that K(ϕ)
∣∣
[0,ε]

, as a

composition of Lipchitz functions, is Lipschitz continuous.

We claim that K is unbounded. To see this take a sequence of constant

functions convergent to zero, ϕk : [0, 1] → R, k ∈ N, de�ned by ϕk(x) = 1√
k
.

According to (7), we get

K(ϕk)(x) =


1 for 0 ≤ x <

1
k

1√
kx

for
1
k
≤ x ≤ 1

k ∈ N.

Since

‖K(ϕk)‖ψ ≥
∣∣∣ϕk(x)− ϕk(x)

x− x

∣∣∣, x, x ∈ [0, 1], x �= y,

setting x = 4
k , x = 0, for all k ≥ 4, we get

‖K(ϕk)‖ψ ≥
k

8
, k ≥ 4,

which shows that K is not bounded. ✷



98 Janusz Matkowski, Maªgorzata Wróbel

References

[1] J. Appell, P.P. Zabrejko. Nonlinear Superposition Operators. Cambridge

University Press, Cambridge, 1990.

[2] K. Lichawski, J. Matkowski, J. Mi±. Locally de�ned operators in the

space of di�erentiable functions. Bull. Polish Acad. Sci. Math., 37,

315�125, 1989.

[3] M. Wróbel. Locally de�ned operators in Hölder's spaces. Nonlinear

Analysis, 2010. doi: 10.1016/j.na.2010.08.046.



Jan Dªugosz University in Cz¦stochowa

Scienti�c Issues, Mathematics XV, Cz¦stochowa 2010

A NOTE ON SI-SPACES AND MI-SPACES

Stanislav P. Ponomarev

Institute of Mathematics

Pomeranian University

ul Arciszewskiego 22a, 76-200 Sªupsk, Poland

e-mail: p35st9@poczta.onet.pl

Abstract. We show that if there exists a second κ-category (or κ-Baire) SI-space,

then there exists a second κ-category (resp. κ-Baire) MI-space. Next we discuss

some properties of real functions on such spaces.

1. Preliminaries and basic de�nitions

The topic of our research stems from the ω-problem formulated below (see also

[1]), which initially and formally had nothing in common with the spaces under

discussion. The connections appeares in the way of analyzing the problem for

non-metrizable spaces.

Although we retain all the de�nitions and notation from [1], we recall some

of them for convenience of the reader.

Let X = (X, τ) be a topological space. To each function F : X → R we

associate the upper and lower Baire functions

M(F, ·) : X → R, m(F, ·) : X → R

de�ned in a usual way (see [1]). It is well known that M(F, ·) is upper semi-

continuous (USC), while m(F, ·) is lower semicontinuous (LSC) on X.
The value

ω(F, x) =M(F, x) −m(F, x) ∈ [0,∞]

is called the oscillation of F at a point x.
We can also give an equivalent de�nition:

ω(F, x) = inf
U

sup
x′,x′′∈U

(F (x′)− F (x′′)),

where the in�mum is taken over all elements U of a neighborhood base τx of

τ at x.
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Let X = (X, τ) be a topological space and a USC function f : X → [0,∞]
be given. If there exists a function F : X → R such that

∀x ∈ X : ω(F, x) = f(x),

then we call F an ω-primitive for f.
By the �ω-problem� on a topological space X we mean the problem of the

existence of an ω-primitive for a given USC function f : X → [0,∞].1

In what follows, we consider only dense-in-themselves topological spaces

and �nite USC functions f.
In [2] it was shown that the ω-problem is solvable for each metric space. For

a non-metrizable space the ω-problem need not be solvable what was shown

in the case of an irresolvable space (see, e.g. [1], Theorem 4).

The notion of a resolvable (irresolvable) space was introduced in [3], where

the basic properties of such spaces were given. Further, we will discuss the

following two special classes of irresolvable spaces introduced in [3].

A dense-in-itself topological space X = (X, τ) is called an MI-space (or

simply, MI) if every dense subset of (X, τ) is open.
A dense-in-itself topological space X = (X, τ) is called an SI-space (or

simply, SI) if X has no resolvable subsets. Each MI-space is an SI-space [3].

We often write X instead of (X, τ). Closure of E is denoted by E. The
phrase �E ⊂ X is τ -open (or τ -closed, τ -dense, etc.)� means that E is so with

respect to the topology τ on X. Similarly, by IntτE we denote the interior of

E with respect to the topology τ. The symbol τ is omitted when no confusion

could arise.

2. On second category MI-spaces and Baire
MI-spaces

The notions of a �rst category (second category) set and of a Baire space

will be considered in some generalized sense. Namely, we adopt the following

de�nitions (see [4], [5]). Let κ be a cardinal, κ > ℵ0.

De�nition 1. A set E ⊂ X = (X, τ) is of the �rst κ-category if it can be

written in the form

E =
⋃
α∈A

Eα,

where cardA < κ and each Eα is nowhere dense in X.
A set E ⊂ X = (X, τ) is of the second κ-category if it is not of the �rst

κ-category.
1Problems of this type in various settings and di�erent terminology have been studied

by many authors. Some results can be found in References which, however, are far from

being complete.
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De�nition 2. A topological space X = (X, τ) is called κ-Baire if the inter-

section of fewer than κ dense open subsets of X is dense in X.

Recall that the de�nitions of a �usual� �rst (second) category set and of

a Baire space correspond to κ = ℵ1 and that each second κ-category set

(κ-Baire space) is at the same time a �usual� second category set (resp. Baire

space).

De�nition 3. ([5]). A space X = (X, τ) is called κ-SIB if it is a κ-Baire
SI-space. We also say that X is a κ-SIB-space.

In a similar way, we give

De�nition 4. A space X = (X, τ) is called κ-MIB (or κ-MIB-space) if X is

a κ-Baire MI-space.

Although initiated by the ω-problem, the propositions we are going to prove

in this section were motivated by [5] and [6].

In [5] the authors obtained consistency and existence results concerning

κ-SIB-spaces. Their methods used the theory of ideals on cardinals.

Our goal is far more simple. Namely, we are going only to show that

if there exists a κ-SIB-space (or a second κ-category SI-space), then there

exists a corresponding MI-space, i.e. a κ-MIB-space (or, respectively, a second

κ-category MI-space). Some properties of functions and the ω-problem for

such spaces will be discussed in Section 3.

Let X = (X, τ) be a topological space. Following [6], let D(X, τ) denote
the family of all dense subsets of (X, τ).

By F(X, τ) we denote the family of �lters F on (X, τ) consisting of dense

subsets of (X, τ). It is clear that F(X, τ) is partially ordered by the usual

inclusion relation.

Lemma 1. ([6], Lemma 3.3). Let X = (X, τ) be a topological space. Then

there exists an ultra�lter Fm ∈ F(X, τ).

Given a topological space (X, τ) and a �lter F ∈ F(X, τ), one may produce

a �ner topology τ̂ on X generated by the family τ∪F . By de�nition, the basis
for τ̂ consists of all intersections U ∩E, where ∅ �= U ∈ τ and E ∈ F (see [6]).

It is convenient to state the next two theorems of this section in the form

of the following Proposition from [6]. Only category and baireness will be new

items and this is exactly the object of our consideration.
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Lemma 2. ([6], P roposition 3.4). Let X = (X, τ) be a dense-in-itself T1 (or

Hausdor�) space. Let Fm ∈ F(X, τ) be an ultra�lter. De�ne τ̂ to be the

topology generated by τ ∪Fm. Then

(i) D(X, τ̂ ) = Fm;

(ii) (X, τ̂ ) is an MI�space which is T1 (respectively, Hausdor�);

(iii) if (X, τ) is connected, then so is (X, τ̂ ).

Lemma 3. ([3], Theorem 29). Every dense subset of an SI�space has dense

interior.

Now we will prove the �rst main result of this section.

Theorem 1. Assume that there exists a second κ-category T1 (or Hausdor�)

space (X, τ) which is SI. Let Fm ∈ F(X, τ) be an ultra�lter and let τ̂ be

a topology on X generated by τ ∪Fm. Then

(i) D(X, τ̂ ) = Fm;

(ii) (X, τ̂ ) is a T1 (respectively, Hausdor�) MI-space;

(iii) (X, τ̂ ) is of second κ-category; thus (X, τ̂ ) is a second κ-category
MI-space;

(iv) if (X, τ) is connected, then so is (X, τ̂ ).

Proof. Assertions (i), (ii), (iv) follow straightforward from Lemma 2. We

only need to prove (iii). Assume that (iii) does not hold. Then there exists

a set A, cardA < κ, such that

X =
⋃
α∈A

Eα,

where each Eα is τ̂ -nowhere dense in X (i.e. nowhere dense in (X, τ̂ )).
Therefore X \ Xα is τ̂ -dense, hence τ -dense in X because τ ⊂ τ̂ . Since
(X, τ) is SI, we have by Lemma 3 that Intτ (X \ Eα) is τ -dense in X. It
follows that X \ Intτ (X \ Eα) is τ -closed and τ -nowhere dense in X. Since
Eα ⊂ X \ Intτ (X \ Eα), we conclude that every Eα is τ -nowhere dense in X;
a contradiction because (X, τ) is of the second κ-category. �

Lemma 4. ([3], Theorem 33). If X is an MI�space and E ⊂ X, then

IntE = ∅ if and only if E is closed and discrete (the empty set is considered

as discrete).

Next we will prove our second main result replacing second κ-category
spaces by κ-Baire spaces.
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Theorem 2. Assume that there exists a dense-in-itself T1 (or Hausdor�)

κ-SIB-space (X, τ). Let Fm ∈ F(X, τ) be an ultra�lter and let τ̂ be a topology

on X generated by τ ∪Fm. Then

(i) D(X, τ̂ ) = Fm;

(ii) (X, τ̂ ) is an MI-space which is T1 (respectively, Hausdor�);

(iii) (X, τ̂ ) is a κ-Baire space;

Thus (X, τ̂ ) is a κ-MIB-space which is T1 (respectively, Hausdor�);

(iv) moreover, if (X, τ) is connected, then so is (X, τ̂ ).

Proof. As in Theorem 1, claims (i), (ii), (iv) follow immediately from Lem-

ma 2. It only remains to prove (iii). Assume that (iii) does not hold. Then

there exists a nonempty set G ∈ τ̂ which is of the �rst κ-category in (X, τ̂ ).
Let us prove that in this case the set X \G should be dense in (X, τ̂ ).
Since the family {W ∩E : W ∈ τ \{∅}, E ∈ Fm} is a basis of the topology

τ̂ , it su�ces to show that

∀ E ∈ Fm ∀W ∈ τ \ {∅} : E ∩W ∩ (X \G) �= ∅. (3)

Assume that this does not hold. Then there exist E0 ∈ Fm and W0 ∈ τ \ {∅}
such that E0 ∩W0 ∩ (X \ G) = ∅. It follows that E0 ⊂ (X \W0) ∪ G, and
therefore (X \W0) ∪G ∈ Fm, because Fm is a �lter.

Then we have

∀ E ∈ Fm : E ∩ ((X \W0) ∪G) ∈ Fm,

hence E ∩ ((X \W0) ∪ G) = (E \W0) ∪ (E ∩ G) is dense in (X, τ) for each
E ∈ Fm. Since ∅ �=W0 is τ -open, this yields that E ∩G is τ -dense in W0 for

each E ∈ Fm. In other words,

∀ E ∈ Fm ∀ V ∈ τ \ {∅}, V ⊂W0, : V ∩ (E ∩G) = (V ∩ E) ∩G �= ∅. (4)

Since V ∩E ∈ τ̂ \ {∅}, Eq. (4) implies that a τ̂ -open set G∩W0 is τ̂ -dense
in a τ -open, hence τ̂ -open, set W0. It follows that W0 \G is τ̂ -nowhere dense
in a τ̂ -open set W0.

This implies, recalling that G is, by assumption, �rst κ-category in (X, τ̂ ),
that W0 is also �rst κ-category in (X, τ̂ ) what follows immediately in view of

the equality

W0 = (W0 \G) ∪ (W0 ∩G).

Therefore, there exists a set A, cardA < κ, such that

W0 =
⋃
α∈A

Tα, (5)
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where each Tα is nowhere dense in (X, τ̂ ). Since Intτ̂Tα = ∅ and (X, τ̂ ) is MI,

we have that every Tα is τ̂ -closed and τ̂ -discrete (Lemma 4). As (X, τ̂ ) is

dense-in-itself, each X \Tα is dense in (X, τ̂ ). Since (X, τ) is κ-Baire, a τ -open
set W0 is of the second κ-category in (X, τ), therefore it follows by (5) that

there exist β ∈ A and Ω ⊂W0, Ω ∈ τ \ {∅}, such that Tβ is τ -dense in Ω.
Since the set X \ Tβ is τ̂ -dense in X, it is also τ -dense in X. In particular,

X \ Tβ is τ -dense in Ω.
We have

Ω = (Ω ∩ Tβ) ∪ (Ω ∩ (X \ Tβ)),

where each of the two terms is τ -dense in Ω.
But this means that a τ -open set Ω is resolvable, which is impossible,

because (X, τ) is an SI�space.

Consequently, we have shown that if (3) does not hold, then we get a con-

tradiction. Thus X \ G is τ̂ -dense in X. But this is again a contradiction

because G is nonempty and τ̂ -open.
We �nally conclude that (X, τ̂ ) has no nonempty �rst κ-category open

subsets, i.e. (X, τ̂ ) is κ-Baire, as claimed. �
To complete this section, let us make the following

Remark 1. In [9] it was shown that there is a model of the theory ZF in

which all the subsets of the real line are Lebesgue measurable. Let Rs denote

the real line in that model and τd denote the usual density topology on Rs.
Question: is ZF consistent with the conjunction of the following two

statements:

(a) each subset of R is Lebesgue measurable,

(b) almost each point of any set E ⊂ R is its point of density?

If the answer is in a�rmative, then (Rs, τd) is a Baire space which is MI.

Indeed, the complement of each τd-dense set E ⊂ Rs would be of measure zero,

whence E is τd-open in Rs.

3. Some properties of real functions on Baire SI- and
MI-spaces

Recall that if X is a topological space and ϕ : X → R a USC (or LSC)

function, then the set of points at which ϕ is discontinuous is of the �rst

category (and Fσ) in X (see, e.g. [8], Theorem 1), and if X is a Baire space,

then the complement of that set is dense in X. We also recall that by ω(F, x)
we denote the oscillation of F at x ∈ X (cf. ()). Since ω(F, ·) may take the

value∞(:= +∞), we consider [0,∞] with its standard topology of a one-point

compacti�cation of [0,∞).
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Given a mapping ϕ : X → Y between topological spaces, we denote by

C (ϕ) and D(ϕ) the sets of continuity and discontinuity points of ϕ, respec-
tively.

De�nition 5. ([1]). A topological space X is said to be resolvable at a point

x0 ∈ X if each open neighborhood of x0 contains a nonempty open subset which

is resolvable.

We will use the following proposition which is the main result of [1].

Lemma 5. ([1], Theorem 3). Let X = (X, τ) be a topological space. In

order that X be resolvable at a point x0, it is necessary and su�cient that

the following condition be satis�ed. There exist an open neighborhood G of

x0 and a function F : G → R such that 0 < ω(F, x0) < ∞ and ω(F, ·) is

quasicontinuous at x0.

Theorem 3. Let X = (X, τ) be a Baire SI-space. Then for each function

F : X → R we have

(a) C (F ) = C (ω(F, ·)).
(b) The Fσ-set D(F ) is nowhere dense.

Proof. The set E∞ = {x ∈ X : ω(F, x) = ∞} is obviously closed. First

we will show that E∞ is nowhere dense. Indeed, assume that this is not the

case. Then there exists an open set U such that ω(F, x) =∞ for each x ∈ U.
It follows that En = {x ∈ U : F (x) > n} is dense in U for each n ∈ N. Since
U is an SI-subspace of X, we have by Lemma 3 that IntEn is dense in U . The
subspace U is a Baire subspace, this yields

⋂∞
n=1En �= ∅. But then it follows

that F (x) = ∞ at each x ∈
⋂∞

n=1En, which is clearly impossible. Thus, E∞
is nowhere dense in X.

To prove (a), �rst observe that the inclusion C (F ) ⊂ C (ω(F, ·)) is obvi-

ous. The reverse inclusion may be proved as follows. Let x0 ∈ C (ω(F, ·)).
The case ω(F, x0) = ∞ is impossible what follows immediately from the

fact that E∞ is nowhere dense. So we have ω(F, x0) < ∞. We claim that

ω(F, x0) = 0. Indeed, if not, we would get, by Lemma 5, that X is resolvable

at x0, a contradiction because X is SI. Thus ω(F, x0) = 0, i.e. x0 ∈ C (F ).
This shows that C (ω(F, ·)) ⊂ C (F ) which completes the proof of Claim (a).

Put E0 = X \ E∞. Since ω(F, ·) is USC and �nite on a dense open set E0

(which is a Baire subspace of X), the set E0∩C (ω(F, ·)) = E0∩C (F ) is dense
in E0, hence by Lemma 3, has a dense interior, because E0 is SI. Therefore,

D(F ) = E∞ ∪ (E0 \C (F )) = X \C (F ) is a nowhere dense subset of X which

proves Claim (b). �
Similar proposition holds for MI-spaces. Namely, we have



106 Stanislav P. Ponomarev

Theorem 4. Let X = (X, τ) be a Baire MI-space. Then for each function

F : X → R we have

(a*) C (F ) = C (ω(F, ·)).
(b*) D(F ) is a discrete closed set.

Proof. Since each MI-space is an SI-space, Claim (a*) follows from Claim

(a) of Theorem 3. By Claim (b) of Theorem 3, we have IntD(F ) = ∅, whence
by Lemma 4, Claim (b*) follows. �

As a consequence, we obtain the following simple criteria for the existence

of ω-primitives on Baire SI- and MI-spaces.

Theorem 5. (A) Let X = (X, τ) be a Baire SI-space. Then a USC function

f : X → [0,∞) has an ω-primitive F : X → R if and only if f vanishes on

a dense subset of X.

(B) Let X = (X, τ) be a Baire MI-space. Then a USC function

f : X → [0,∞) has an ω-primitive F : X → R if and only if f vanishes

outside of a closed and discrete subset of X.

In either of the cases (A),(B) one may take F = f.

Proof of (A). Assume that F is an ω-primitive for f. Then applying Claim

(a) of Theorem 3, we get C (F ) = C (ω(F, ·)) = C (f). This implies, in view of

Claim (b) of Theorem 3, that f(x) = ω(F, x) = 0 at each point x of the dense

set X \D(F ).
Conversely, if a USC function f : X → [0,∞) vanishes on a dense set E,

then it is easy to see that ∀x ∈ X : ω(f, x) = f(x).
Proof of (B). Assume that a USC function f : X → [0,∞) has an

ω�primitive F : X → R. By Theorem 4, the set D(F ) of points at which

F is discontinuous is closed and discrete. Therefore, f(x) = ω(F, x) = 0 at

each x ∈ X \D(F ).
Conversely, assume that there is a closed and discrete set E ⊂ X such that

a USC function f : X → [0,∞) vanishes outside E. Since X is dense in itself

and f ≥ 0 is USC, we easily deduce that the equality ω(f, x) = f(x) holds for
each x ∈ X. In other words, f is an ω-primitive for itself. �
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Abstract. The Cauchy problems for time-fractional di�usion equation with delta

pulse initial value of a sought-for function is studied in a circle domain in the axisym-

metric case under zero Dirichlet and Neumann boundary conditions, respectively.

The Caputo fractional derivative is used. The Laplace and �nite Hankel integral

transforms are employed. The results are illustrated graphically.

1. Introduction

The time-fractional di�usion equation

∂αu

∂tα
= a∆u, 0 < α ≤ 2, (1)

is a mathematical model of a wide range of important physical phenomena in

amorphous and porous materials, fractals, disordered media, dielectrics and

semiconductors, geophysical and geological processes, medicine and biological

systems [1�8].

In Eq. (1), we use the Caputo fractional derivative [9]

dαu

dtα
=

1
Γ(n− α)

∫ t

0
(t− τ)n−α−1d

nu(τ)
dτn

dτ, n− 1 < α < n, (2)
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where Γ(x) is the gamma function. The Laplace transform rule for the Caputo

derivative has the following form:

L
{
dαu(t)
dtα

}
= sαL{u(t)} −

n−1∑
k=0

u(k)(0+)sα−1−k, n− 1 < α < n, (3)

with s being the transform variable.

Several problems for time-fractional di�usion equation in a cylinder were

considered in [10�14]. In this paper we investigate the Cauchy problems with

delta function initial value of a sought-for function in a circle domain under

zero Dirichlet and Neumann boundary conditions, respectively, and compare

the obtained results with the corresponding solution in an in�nite domain.

2. The Cauchy problem in an in�nite domain

In order to gain a better insight of the considered problem in a circle, we

recall the corresponding result for the in�nite domain [15]. Let us study the

Cauchy problem for time-fractional di�usion equation under delta-function

initial condition for a sought-for function:

∂αu

∂tα
= a

(
∂2u

∂r2
+

1
r

∂u

∂r

)
, 0 < t <∞, 0 ≤ r <∞, (4)

t = 0 : u =
p

2πr
δ+(r), 0 < α ≤ 2, (5)

t = 0 :
∂u

∂t
= 0, 1 < α ≤ 2. (6)

As usually, we impose the zero condition at in�nity:

lim
r→∞u(r, t) = 0. (7)

Using the Laplace transform with respect to time t and the Hankel transform

with respect to the spatial coordinate r, we obtain

u∗ =
p

2π
sα−1

sα + aξ2
, (8)

where the asterisk denotes the transforms.

Inversion of the Laplace transform is carried out in terms of the Mittag-

Le�er functions

Eα(z) =
∞∑
n=0

zn

Γ(αn + 1)
, α > 0, z ∈ C, (9)
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Fig. 1. Dependence of solution on the similarity variable

(the Cauchy problem with the delta pulse initial condition)

due to the following formula [9]

L−1

{
sα−1

sα + aξ2

}
= Eα(−aξ2tα). (10)

Thus, we get

u =
p

2π

∫ ∞

0
Eα(−aξ2tα)J0(rξ) ξ dξ. (11)

The similarity variable r̄, new integration variable η and nondimensional

solution ū are de�ned as

r̄ =
r√
atα/2

, η =
√
atα/2ξ, ū =

atα

p
u. (12)

Hence,

ū =
1
2π

∫ ∞

0
Eα(−η2)J0(r̄η) η dη. (13)

The behavior of the solution at the origin was analyzed in [15], where it was

shown that only the fundamental solution to the classical di�usion equation
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(α = 1) has no singularity at the origin. For 0 ≤ α < 1 and 1 < α < 2 the

solution has the logarithmic singularity at the origin:

ū ∼ − 1
2πΓ(1− α)

ln r̄. (14)

Dependence of nondimensional solution ū on nondimensional distance r̄ is
shown in Fig. 1.

3. The Cauchy problem in a circle with zero

Dirichlet boundary condition

Consider the following initial-boundary value problem for time-fractional dif-

fusion equation:

∂αu

∂tα
= a

(
∂2u

∂r2
+

1
r

∂u

∂r

)
, 0 < t <∞, 0 ≤ r < R, (15)

t = 0 : u =
p

2πr
δ+(r), 0 < α ≤ 2, (16)

t = 0 :
∂u

∂t
= 0, 1 < α ≤ 2. (17)

r = R : u = 0. (18)

The �nite Hankel transforms are used in cylindrical coordinates in the

domain 0 ≤ r ≤ R. The form of the �nite Hankel transform depends on the

type of boundary conditions at r = R. We restrict ourselves to the �nite

Hankel transform of the zeroth order. For Dirichlet boundary conditions with

the given boundary value of a function at r = R we have [16]

H(D){f(r)} = f∗(ξn) =
∫ R

0
f(r)J0(ξnr) r dr (19)

with the inverse transform

H−1(D){f∗(ξn)} = f(r) =
2
R2

∞∑
n=1

f∗(ξn)
J0(ξnr)
J2

1 (ξnR)
, (20)

where ξn are positive zeros of the transcendental equation

J0(Rξn) = 0. (21)
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Fig. 2. Dependence of solution on distance

(the zero Dirichlet boundary condition; κ = 0.5).

The following formula plays important role in applications of the �nite Hankel

transform:

H(D)

{
d2f(r)
dr2

+
1
r

df(r)
dr

}
= −ξ2

nf
∗(ξn) +RξnJ1(ξnR)f(R). (22)

The integral transform technique allows us to get the solution in the trans-

form domain:

u∗ =
p

2π
sα−1

sα + aξ2n
, (23)

and after inversion we arrive at the series representation of the solution:

u =
p

πR2

∞∑
n=1

Eα(−aξ2tα)
J0(rξn)
J2

1 (Rξn)
. (24)

Introdusing nondimensional quantities

ηn = Rξn, κ =
√
atα/2

R
, r̄ =

r

R
, ū =

R2

p
u, (25)
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we have

ū =
1
π

∞∑
n=1

Eα(−κ2η2
n)
J0(r̄ηn)
J2

1 (ηn)
. (26)

Figure 2 shows the dependence of the solution (26) on distance for κ = 0.5.

4. The Cauchy problem in a circle with zero

Neumann boundary condition

Now we study the time-fractional di�usion equation in a circle under delta

pulse initial condition and zero Neumann boundary condition:

∂αu

∂tα
= a

(
∂2u

∂r2
+

1
r

∂u

∂r

)
, 0 < t <∞, 0 ≤ r < R, (27)

t = 0 : u =
p

2πr
δ+(r), 0 < α ≤ 2, (28)

t = 0 :
∂u

∂t
= 0, 1 < α ≤ 2, (29)

r = R :
∂u

∂r
= 0. (30)

For the Neumann boundary condition with the given value of normal

derivative of a function, the corresponding �nite Hankel transform is de�ned

as [16]:

H(N){f(r)} = f∗(ξn) =
∫ R

0
rf(r)J0(rξn)dr, (31)

having the inverse

H−1(N){f∗(ξn)} = f(r) =
2
R2

∞∑
n=0

f∗(ξn)
J0(rξn)

[J0(Rξn)]2
, (32)

where ξn are nonnegative roots of the transcendental equation

J1(Rξn) = 0. (33)

To obtain the correct results, it should be emphasized that Eq. (33) also has

the root ξ0 = 0 which should be taken into consideration.
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Fig. 3. Dependence of solution on distance

(the zero Neumann boundary condition; κ = 0.5).

The following formula explains importance of the �nite Hankel transform

of such a type for Neumann boundary value problems:

H(N)

{
d2f

dr2
+

1
r

df

dr

}
= −ξ2

nf
∗(ξn) +RJ0(Rξn)

(
df

dr

)
r=R

. (34)

Thus, we obtain

u∗ =
p

2π
sα−1

sα + aξ2n
(35)

and

u =
p

πR2

∞∑
n=0

Eα(−aξ2tα)
J0(rξn)
J2

0 (Rξn)
(36)

or in terms of nondimensional quantities (25)

ū =
1
π

∞∑
n=0

Eα(−κ2η2
n)
J0(r̄ηn)
J2

0 (ηn)
. (37)

Dependence of the solution (37) on distance for κ = 0.5 is depicted in Fig. 3.
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5. Concluding remarks

The results given by Eqs. (26) and (37) and displayed in Figures 2 and 3 are

the primary results of this paper. The parameter κ describes nondimensional

time and in the case of the wave equation (α = 2) the values 0 < κ < 1
and κ = 1 correspond to two characteristic cases: the wave front does not

yet arrive at the boundary, and the wave front arrives at the boundary. For

0 ≤ α < 1 and 1 < α < 2 in the case κ = 0.5 the solution does not �feel�

the type of the boundary condition: the curves in Figs. 2 and 3 are very

similar and do not di�er essentially from the corresponding curves obtained

for unbounded domain (see Fig. 1), including the logarithmic singularity at

the origin. But for κ = 1 the situation changes substantially.

References

[1] A. P¦kalski, K. Sznajd-Weron (Eds.) Anomalous Di�usion: From Basics

to Applications. Springer, Berlin, 1999.

[2] R. Hilfer (Ed.) Applications of Fractional Calculus in Physics. World

Scienti�c, Singapore, 2000.

[3] R. Metzler, J. Klafter. The random walk's guide to anomalous di�usion:

A fractional dynamics approach. Phys. Rep., 339, 1�77, 2000.

[4] G.M. Zaslavsky. Chaos, fractional kinetics, and anomalous transport.

Phys. Rep., 371, 461�580, 2002.

[5] B.J. West, M. Bologna, P. Grigolini. Physics of Fractal Operators.

Springer, New York, 2003.

[6] R. Metzler, J. Klafter. The restaurant at the end of the random walk:

recent developments in the description of anomalous transport by frac-

tional dynamics. J. Phys. A: Math. Gen., 37, R161�R208, 2004.

[7] R.L. Magin. Fractional Calculus in Bioengineering. Begell House Pub-

lishers, Connecticut, 2006.

[8] V.V. Uchaikin. Method of Fractional Derivatives. Artishock, Ulyanovsk,

2008. (In Russian).

[9] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo. Theory and Applications of

Fractional Di�erential Equations. Elsevier, Amsterdam, 2006.



Axisymmetric solutions to time-fractional di�usion equation 117

[10] Y.Z. Povstenko. Fractional radial di�usion in a cylinder. J. Mol. Liq.,

137, 46�50, 2008.

[11] N. Özdemir, D.Karadeniz. Fractional di�usion-wave problem in cylin-

drical coordinates. Phys. Lett. A, 372, 5968�5972, 2008.

[12] N. Özdemir, D. Karadeniz, B.B. Iskender. Fractional optimal con-

trol problem of a distributed system in cylindrical coordinates. Phys.

Lett. A, 373, 221�226, 2009.

[13] E.K. Lenzi, L.R. da Silva, A.T. Silva, L.R. Evangelista, M.K. Lenzi.

Some results for a fractional di�usion equation with radial symmetry in

a con�ned region. Physica A, 388, 806�810, 2009.

[14] H. Qi, J. Liu. Time-fractional radial di�usion in hollow geometries.

Meccanica, 45, 577�583, 2010.

[15] Y. Povstenko. Analysis of fundamental solutions to fractional di�usion-

wave equation in polar coordinates. Scienti�c Issues, Jan Dªugosz Uni-

versity of Cz¦stochowa, Mathematics, XIV, 97�104, 2009.

[16] I.N. Sneddon. The Use of Integral Transforms. McGraw-Hill, New York,

1972.





PART II

COMPUTER SCIENCE





Jan Dªugosz University in Cz¦stochowa

Scienti�c Issues, Mathematics XV, Cz¦stochowa 2010

ON SOME SPECIFICATION LANGUAGES

OF CRYPTOGRAPHIC PROTOCOLS

Paweª Dudek, Mirosªaw Kurkowski

Institute of Computer and Information Sciences

Cz¦stochowa University of Technology

ul. D¡browskiego 73, 42-200 Cz¦stochowa, Poland

e-mail: pdudek@icis.pcz.pl, mkurkowski@icis.pcz.pl

Abstract. A key element of the security systems in computer networks are cryp-

tographic protocols (CP). These protocols are concurrent algorithms used to pro-

vide relevant system security goals. Their main purpose is, for example, a mutual

authentication (identi�cation) of communicating parties (users, servers), distribution

of new keys and session encryption. Literature indicates numerous errors in proto-

col constructions. Thus, there is a need to create methods for CP speci�cation and

veri�cation.

In this paper, we investigate a problem of CP speci�cation. The paper discusses

the so-called Common Language � the simplest language of CP speci�cation and

HLPSL � a speci�cation language used in the European veri�cation project Avispa.

Finally, we introduce PTL � the new language developed for CP speci�cation which

allows fully automatic veri�cation.

1. Introduction

It is well known that today each IT system and computer network must meet

certain security properties [6]. CP are now commonly used in various appli-

cations (banking, emails, encrypted Web pages, instant messaging networks,

etc.) for achieving security goals. They are also widely used as essential

components of larger systems such as communication protocols for wider

application. Good examples are the systems of Kerberos, SSL and Zfone.

A pioneering role in the area of CP has the paper published in 1978 by Need-

ham and Schroeder [2]. In their work the authors presented main ideas of

applying cryptographic techniques in order to solve problems related to the
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authentication of communicating parties in communication networks. Sug-

gested layouts of authentication protocols can use symmetric and asymmetric

cryptography.

CP are concurrent algorithms, designed to attain certain speci�c objectives

during the transfer, including the transactions carried out electronically. In

general, these protocols are algorithms whose implementations are performed

in a concurrent way and may be used for cooperating computers, computer

networks or simply across multiple CPUs. This is a signi�cant di�erence

between them and ordinary sequential algorithms. CP can also specify con-

current processes as communicating sequential processes with each other from

time to time through the exchange of data (the parameters) or the use of

common resources. Cryptographic protocols are those concurrent processes,

which work using cryptographic algorithms.

A speci�cation of any cryptographic protocol has to contain:

• the number of parties involved in the protocol,

• the nature of the participation of the parties,

• the goal of the protocol,

• actions comprised in the implementation of the protocol.

Basic security goals which CP need to ensure are the following:

• mutual authentication (con�rmation of identity) of communicating

parties,

• con�dentiality of transmitted information,

• integrity of transmitted data,

• distribution of session key.

Actions performed during the execution of the protocol can be divided

into internal and external ones. External actions are those which rely on the

mutual exchange of transmitted information. Description of those actions will

specify sources of any sent message (senders), recipients of sent messages and

their contents. It must also indicate, respectively, which part of the sent letter

has to be encrypted and how. Internal actions are all the other actions that

each party must perform on its own during the execution of the protocol. As

examples, one can give generating new, con�dential information, encrypting

and deciphering cryptograms, comparing data or performing mathematical

operations on locally held data.

Applying cryptographic protocols in order to ensure adequate security pur-

poses in computer systems requires special attention with regard to the cor-

rectness of their executions. Incorrect work of protocols can lead to di�erent
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sorts of losses of users resources [4]. Cryptographic protocols are usually short

and not too complicated in their structure, so often entirely informal argu-

ments are used to justify that they operate properly and to all system users

that the protocol actually does what it is expected to do [2].

In most cases, however, it is di�cult to imagine all possible executions

of these complex systems. This becomes especially di�cult when dealing

with programs that are executed concurrently on many computers, where

the partial results of these performances may a�ect the implementation of the

next instruction. For these reasons, the method of verifying the correctness

of software systems is constantly an extensively developed area of computer

science.

Basically, we can distinguish two main groups of veri�cation methods:

1. Testing of real or virtual systems (simulations).

2. Formal modeling and veri�cation.

In the �rst case, the veri�cation process simply consists in testing the

systems already implemented or simulating their performances by computers

(eg. virtual machines). After carrying out several such tests or simulations,

unfortunately, we can only say that so far the implementation of all programs

works properly.

The second direction of research, namely formal modeling and veri�cation,

involves creating special mathematical structures which model processes tak-

ing place during protocol executions. It is therefore, in some sense, the creation

of a new, speci�c types of simulation. However, as numerous examples show,

this type of modeling can sometimes prove formally that certain undesirable

behavior of the system will never occur.

Creating mathematical structures simulating the implementation of cryp-

tographic protocols is not an easy process. This work, however, requires to

use a specially constructed languages for protocols speci�cation. In [2] a sim-

ple language for the speci�cation of protocols has been applied, known simply

as Common Language (CL) [1, 6]. As an example, we show below protocol

speci�cation using CL and some information about it.

2. Common Language � CL

Common Language has never been formalized. However, the grammar of the

basic version is not too complicated. The protocol is described as a sequence

of steps, specifying the sender of the message, recipient and content of the

sent letter [1].

Each step is speci�ed as follows:
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A → B : M ,

where A is, of course, the sender of the message, B is the recipient and M is

the message.

The grammar of messages is the following:

M : A | T | K | N | L | M,M | < M >K ,

where A belongs to a set of users, K to a set of cryptographic keys, T to the

set of timestamps, L is a life time of T . The keys used in the speci�cation,

of course, may be symmetric or asymmetric. In the �rst case, we denote by

KAB the key, where A and B are their owners; in the second case, the symbol

KA denotes the public key of A and K−1
A its private key. M,M is simply

a concatenation of messages, and by writing < M >K we understand the

ciphertext M encrypted with the key K.

Here, as an example, we show a speci�cation for some version of Kerberos

Protocol using the Common Language. The basic version of this protocol is as

follows: we have two parties A and B, which share the server S with di�erent

secret keys. The main goal of this protocol is to generate by A a session key

in order to conduct communication with B.

Protocol speci�cation:

1. A → S : A,B,

2. S → A : < T,L,K,B >KAS
, < T,L,K,A >KBS

,

3. A → B : < A,T >K , < T,L,K,A >KBS
,

4. B → A : < T >K .

In the �rst step of the protocol, the user A sends to the server S a message

consisting of its identi�er and the name of B. In this way, S possesses infor-

mation with whom A wants to communicate. In the second step, the server

generates two messages with a timestamp T , the ticket duration L and a newly

generated, random session key K. S encrypts all of them using a secret key

shared with B. Then it gets a timestamp, the duration L and the identi�er B,
and encrypts everything using secret key shared with A. Next, S sends two

encrypted messages to A. In the third step, A generates a message containing

its identi�er and timestamp, encrypts them using the session key K newly

obtained from S and sends it to B. A also sends to B a message encrypted

by the server using a common key for B and S. Then B possesses the key K
and creates a message consisting of the timestamp T , encrypts it using K and

sends it to A.
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Executing a protocol assumes the existence of an ideal clock allocating

time in compliance with clocks of all users of the server. This is achieved by

synchronizing every few minutes to a secure server clock time. The key server

S needs to remember all the keys that it shares with users. However, the

session key is created for the purpose of communication between A and B,
then the server forgets about the result.

Obviously, as one can see from the above example, CL is very simple and

it is probably di�cult to imagine a simpler protocol speci�cation language.

However, it is important to note that it requires additional information about,

for example, the description of internal actions during the protocol execution,

including generating new elements such as keys, nonces (pseudo-randoms num-

bers generated for a single session) or timestamps. There is also no information

about how users compose sent messages. That is the reason why CL cannot

be used in fully automatic veri�cation.

3. HLPSL Language

Currently, the world's most recognizable system of formal veri�cation of cryp-

tographic protocols is the AVISPA system (Automated Validation of Internet

Security Protocols and Applications) [7, 10]. This system was created through

cooperation of several institutions: Universities of Genova, Zurich, Nancy and

subsidiaries of Siemens in Munich. For this project a special role-based, high-

level language HLPSL for CP speci�cation (High Level Protocol Speci�cation

Language) was created.

In HLPSL each participant has a de�ned primary role (basic role), which

is described by various parameters related to the behavior of participants

during the execution protocol. These roles de�ne how users can transfer their

information during the executions of the protocol. Data included in those roles

determine the information, which a participant can use initially, and the initial

state of the knowledge. Additionally, roles describe how the users knowledge

might change during the execution of the protocol. The speci�cation given in

basic roles can be used later by one or more users who can play a particular role

in the protocol execution. Then, to create the composed roles we describe how

the individual members communicate among themselves by means of repeated

basic roles. In this way, we obtain a speci�cation schema for data exchange

during the whole protocol execution. Roles are independent processes, which

have a speci�c name, replaced by the value of initialization parameters, also

contain local declarations. Actions of simple roles are speci�ed in order to

describe transitions in the form of a change in the role depending on the events

occurred, while the complex roles determine the way in which pre-de�ned roles

are combined.



126 Paweª Dudek, Mirosªaw Kurkowski

The HLPSL speci�cation also de�nes additional parameters of veri�cation.

Additionally, in a batch �le there will be determined security properties which

are to be examined and the size of the protocol performances in the needed

searching space. The declaration and de�nition of the objectives which we

want to achieve during the veri�cation takes place in an another special section

of speci�cation.

HLPSL allows testing of the following security properties:

• maintaining the con�dentiality of the information,

• strong user authentication on the basis of the message,

• weak user authentication based on a certain message.

Fixed data or variable used in speci�cation must have assigned a unique

type. The list of examples of variables is the following:

• agent � for users identi�ers, for the intruder the letter i is reserved,

• public_key � for public keys of agents. Given a public key pk (resp.

private), its reversed private (resp. public) key is obtained through the

structures inv(pk),

• symmetric_key � for keys used in symmetric encryption,

• nat � for the scope of variables of this type the natural numbers are

used. Nat type is usually used to describe states,

• protocol_id � for identi�ers used in the studied properties,

• message � for representing any message,

• text � for nonces.

Correct messages are de�ned as the submission of the concatenation opera-

tion `.' and/or encryption `_' (message_key) of basic data types. There is no

di�erence between the descriptions of symmetric and asymmetric encryptions.

Assuming that we have a type of agent, the agent A, the nonce Na and the

symmetric key K, the following messages are correct:

1. Na � nonce Na is a message,

2. A.Na � the message containing the identi�er of agent A with a value Na,

3. {A.Na}K � the proper message encrypted with the key K.
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A channel is a variable that connects communicating parties and exchanges

messages between them. HLPSL's channels contain intruder acting in that

channel. The model available in HLPSL is the well known Dolev-Yao model

[3] (denoted by dy) in which the attacker is a network of canals.

The four prede�ned goal predicates listed above contain the following in-

formation:

• secret(E,id,S): declares the information E as a secret shared by the

agents from a set S; this secret will be identi�ed by the constant id

in the goal section;

• witness(A,B,id,E): for a (weak) authentication property of A by B on

E, declares that an agent A is witness for the information E; this goal
will be identi�ed by the constant id in the goal section;

• request(B,A,id,E): for a strong authentication property of A by B on E,
declares that an agent B requests checking the value E; this goal will
be identi�ed by the constant id in the goal section;

• wrequest(B,A,id,E): similar to request property, but in this case for

a weak authentication property.

Summing up, the language HLPSL is a very complex language which allows

the full speci�cation of cryptographic protocols. It is clear, however, that it

has been specially designed deliberately to be used by a speci�c tool, namely

the veri�cation system Avispa. That is why one can re�ect on its versatility.

It is obvious that if we would like to apply the speci�cation of the protocol

in HLPSL in another tool in the study and application, we need appropriate

special translators.

4. VerICS system and PTL language

VerICS [5, 11] is an original tool for automatic or semi-automatic veri�cation

of concurrent systems. The system allows veri�cation of various properties

of systems containing the temporal aspects. One module of VerICS is solely

devoted for the CP veri�cation. The results obtained by the VerICS team

so far are competitive to the other results obtained in Europe and worldwide

[7, 8, 9, 10, 12]. In the case of CP veri�cation, a special mathematical model

of CP executions has been developed. This model allows testing various exe-

cutions of CP. The formalism has been designed so as to be able to identify

accurately the correct sequences of steps protocol performances that make up

executions performances.
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For this project, a simple speci�cation language called ProTocol Language

(PTL) has been proposed. In this approach, the protocol is de�ned as a se-

quence of steps, and each of them is de�ned as an ordered pair of the form:

(α1, α2). The component α1 de�nes external actions of the protocol (messag-

ing), while the component α2 de�nes internal ones.

Both components contain basic and complete information about the spec-

i�ed protocol. More precisely:

α1 = (P,Q,M), α2 = (t,X,G, τ),

where P is the step initiator, Q is the owner andM is the sent message. So far,

there are no di�erences between this speci�cation and the speci�cation in the

CL language. In this approach, we have yet more information: t is a variable

indicating time when the step's execution starts, X is a set of information

needed to compose a message, G is a set of sensitive information generated

for a given step, and τ is a time constraint ensuring that each step can be

performed. This speci�cation allows precise determination of not only the

external actions of the protocol but also internal ones.

The message grammar is the same as the corresponding grammar in CL:

M : A | T | K | N | L | M,M | < M >K .

In addition, we specify time constraints according to the following gram-

mar:

τ : false | true | t− T ≤ L | τ1 ∧ τ2.
As an example of a full protocol speci�cation in the PTL language, we give

now a formal description of the Kerberos Protocol mentioned above.

Protocol speci�cation in PTL is as follows:

1. The �rst step (α1, α2), where

α1 = (A;S;A,B), α2 = (t1, {A,B}, ∅, true).

2. The second step (β1, β2), where

β1 = (S;A;< T,L,K,B >KAS
, < T,L,K,A >KBS

),

β2 = (t2, {T,L,K,A,B,KAS ,KBS}, {T,K}, t2 − T ≤ L).

3. The third step (γ1, γ2), where

γ1 = (A;B;< A,T >K , < T,L,K,A >KBS
),

γ2 = (t3, {T,K,A,< T,L,K,A >KBS
}, ∅, t3 − T ≤ L).
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4. The fourth step (δ1, δ2), where

δ1 = (B;A;< T >K), δ2 = (t4, T,K, ∅, t4 − T ≤ L).

Note that this speci�cation gives precise information on both external and

internal actions of the protocol. It also determines precisely the time condi-

tions which users need to ful�ll.

From the technical point of view, a PTL speci�cation �le contains only

information needed for further steps of veri�cation process. This �le consists

of two main parts. In the �rst one, we have basic information about numbers

of considered users and protocol steps. The second one contains speci�cation

of all protocol steps in the way mentioned before. In next lines, we have the

description of pairs specifying steps of the protocol.

5. Conclusion

E�ective methods of speci�cation and veri�cation of cryptographic protocols

are an important problem of applied cryptography. In this paper, we have

discussed a few basic languages developed for CP speci�cation. We have

presented the Common Language � the simplest language for protocol spec-

i�cation, HLPSL � the language used in the European project Avispa, and

the PTL language. Investigations in this area are still in progress. The next

steps consists in expanding the expressive power of the PTL language to de-

scribe a larger class of protocols and delays in the network occurring during

the transmission of information.
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Abstract. In the present paper, we consider methods of constructing modular

number systems (MNS), named also as residue number systems, in the complex plane.

The structure of complete sets of residues (CSR) with respect to complex modulo is

investigated. For its creation, the e�ective constructive rule realizing isomorphism of

the given CSR and an adequate ring of real integer residues is proposed.

1. Introduction

Procedures over the complex data in modern computer applications to digital

signal processing, numerical methods, theoretical mechanics, physics, other

sciences are of fundamental importance. Typical representatives of mentioned

procedures are, for example, discrete Fourier transforms, spectral analysis,

convolution and correlation of complex sequences, algorithms of linear alge-

bra and di�erential equations etc. In view of exclusive complexity of this

type of applied procedures, studies in the �eld of modular technique of high-

speed parallel computations in the complex plane are among the most priority

directions of modern computer science and its applications [1�4].

2. Some theoretical foundations

Let us consider the set of integer complex numbers (ICN) often named also

as Gaussian: Γ = {X + iY | X, Y ∈ Z; i2 = −1}. The set Γ repre-

sents a commutative ring without zero divisor and with four dividers of unity:

1; -1; i and −i [1, 2].
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De�nition 1. The norm of ICN U = X + iY is the square of its magni-

tude: ‖U‖ = X2 + Y 2.

De�nition 2. The Gaussians di�ering by multipliers which are the unit

dividers are said to be associated.

De�nition 3. The unit dividers of ring Γ and units associated with ICN

are named trivial dividers.

De�nition 4. The Gaussian having nontrivial zero divisor is called com-

posite, otherwise it is named a Gauss prime number (GPN).

The necessary and su�cient condition of simplicity of the ICN U = X+ iY
is primality of integer real number (IRN) U . This implies that the norm of

GPN is a prime IRN or square of prime IRN. In the �rst case, the real and

imaginary parts of the GPN are distinct from zero, and in the second case,

the GPN coincides with the prime IRN accurate within unit dividers.

In the ring Γ the Euclidian lemma is formulated as follows [1].

Lemma. For any ICN A and m in Γ there are some q and r such that

A = q m; ‖r‖ < ‖m‖. (1)

It should be noted that, unlike a real case, the condition ‖r‖ < ‖m‖ does

not ensure the uniqueness of an incomplete quotient q and a residual r in

formula (1).

De�nition 5. The common divisor d of the ICN A1, A2, . . . , Ak (k > 1)
dividing by another common divisor is named the greatest common divisor

(GCD) and is designated as d = (A1, A2, . . . , Ak). For any collection of the

ICN A1, A2, . . . , Ak a GCD exists accurate within unit dividers.

De�nition 6. If (A1, A2, . . . , Ak) = 1, then the ICN A1, A2, . . . , Ak are

named coprime.

It is obvious that if A = X + iY and (X,Y ) = 1, then the conjugate ICN

A and Ā = X − iY are coprime: (A, Ā) = 1. For arbitrary ICN A and

GPN p the following statement is valid: (A, p) does not divide A. Also in the

case when ICN m1,m2, . . . ,mk are pairwise prime, then the least common

multiple is [m1,m2...,mk] =Mk =
k∏

i=1
mi.

Following the o�ered technique of constructing a modular number systems

(MNS) [5�7] �rst of all we study the structure of adjanced classes of fac-

tor ring Γ/(m), where (m) is a principal ideal generated by some Gaussian
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m = m′ + im′′ (m′, m′′ ∈ Z). We also will study the problem of choice of the

complete set of residues (CSR) modulo m.

The given CSR (as distinct from CSR | · |m in the real case) will be des-

ignated as 〈·|m, thus for the set member of CSR being a result of modulo

operation over ICN A ∈ Γ a denotation 〈 A|m is used. Speci�cally, in the

case whent A vary over Γ, a set of all various residuals r satisfying (1) can be

selected as a ring 〈·|m.

Theorem 1. Let m = m′+ im′′ be an arbitrary module from Γ. Two ICN
A = A′+ iA′′ and B = B′+ iB′′ belong to the same residue class of factor ring

Γ/(m) if and only if the same components of pairs ICN

(m′ A′ + m′′ A′′; m′ A′′ − m′′ A′) and (m′ B′ + m′′ B′′;m′ B′′ − m′′ B′)
belong to the same classes of factor ring Γ/(‖m‖). In other words, the com-

plex congruence

A ≡ B (mod m) (2)

is equivalent to simultaneous real congruences{
m′A′ +m′′A′′ ≡ m′B′ +m′′B′′,

m′A′′ −m′′A′ ≡ m′B′′ −m′′B′.
(3)

Proof. At �rst, we assume that A, B ∈ (m) ⊂ Γ. This implies validity of (2)

and guarantees existence of some ICN q = q′ + iq′′ such that

A−B = q m. (4)

Multiplying (4) by m̄ = m′ − im′′, we obtain

(m′(A′ −B′) +m′′(A′′ −B′′))+

i((m′(A′′ −B′′) +m′′(A′ −B′)) = (q′ + iq′′)‖m‖.

It follows that{
(m′A′ +m′′A′′)− (m′B′ +m′′B′′) ∈ (‖m‖) ⊂ Z,

(m′A′′ −m′′A′)− (m′B′′ −m′′B′) ∈ (‖m‖) ⊂ Z;

thus resulting in simultaneous congruences (3). The described operations

realized in the reverse sequence from (3) lead to (2). The theorem is proved.

As for any ICN A = A′ + iA′′ the congruence

A ≡ 〈A|m (mod m) (5)
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and also the simultaneous congruences(m′A′ +m′′A′′) ≡ |(m′A′ +m′′A′′)|‖m‖,

(m′A′′ −m′′A′) ≡ |(m′A′′ −m′′A′)|‖m‖
(6)

are true, then from the point of view of the theorem 1 it is natural to assume

that the complex residue α = 〈A|m can be uniquely de�ned by means of a pair

of the real residues

(a′; a′′) = (|(m′A′ +m′′A′′)|‖m‖; |(m′A′′ −m′′A′)|‖m‖).

Let us prove the hypothesis validity. Let α = α′ + iα′′ (α′, α′′ ∈ Z). By
setting B = α in the theorem 1 according to (3), we have(m′A′ +m′′A′′) ≡ |(m′α′ +m′′α′′)|‖m‖,

(m′A′′ −m′′A′) ≡ |(m′α′′ −m′′α′)|‖m‖.
(7)

Let us demand that the right-hand members of the same congruences of si-

multaneous congruences (3) and (7) coincide. Then for the real and imaginary

components of residue 〈A|m we obtain the simultaneous equationsm
′α′ +m′′α′′ = a′,

m′α′′ −m′′α′ = a′′,
(8)

which solution is

(α′, α′′) =
(
m′a′ +m′′a′′

‖m‖ ;
m′a′′ −m′′a′

‖m‖

)
. (9)

Thus,

α =
m′a′ +m′′a′′

‖m‖ + i
m′a′′ −m′′a′

‖m‖ =
(m′ + im′′)(a′ + ia′′)

‖m‖

or

〈A|m = α =
m

‖m‖
(
|(m′A′ +m′′A′′)|‖m‖ + i |(m′A′′ −m′′A′)|‖m‖

)
. (10)

The rule (10) for constructing the CSR 〈A|m generated by one-to-one cor-

respondence between the ICN (α′; α′′) and (a′; a′′) (see (8), (9)) can be

represented in speci�ed and more constructive form.
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Theorem 2. In the case when

a) a module m is a nonnegative IRN (m′ > 1, m′′ = 0);
b) a module m = m′ + im′′ is a complex module satisfying the condition

(m′, m′′) = 1
for the residue 〈A|m corresponding to the arbitrary ICN A = A′ + iA′′ the
followig formulas are true, accordingly,

〈A′ + iA′′|m = 〈A′|m + i〈A′′|m, (11)

〈A′ + iA′′|m =
1

‖m‖
(
(m′|m′Rm(A)|‖m‖ −m′′|m′′Rm(A)|‖m‖

)
+ i(m′| −m′′Rm(A)|‖m‖ +m′′|m′Rm(A)|‖m‖)), (12)

where

Rm(A) = Rm(A′, A′′) = |A′ + JA′′|‖m‖

(
J = |m

′′

m′ |‖m‖

)
. (13)

Proof. Let m = m′. Then according to (9)

α′ =
m′a′

‖m‖ =
1
m
|mA′|m2 =

1
m

(
mA′ − 8mA

′

m2
9 m2

)
= A′ − 8A

′

m
9m = |A′|m,

where the integer part of a real number x is designated as 8x9. Similar calcu-

lations for a′′ give the equality α′′ = |A′′|m. Thus, in the case a) the equality

(11) is true.

Consider now the case b). As |(m′)2 + (m′′)2|‖m‖ = 0, taking into account

(13), we have

a′ = |m′A′ +m′′A′′|‖m‖ = |m′
(
A′ +A′′m′′

m′

)
|‖m‖ = |m′Rm(A)|‖m‖, (14)

a′′ = |m′A′′ −m′′A′|‖m‖ = |(m
′)2

m′ A′′ −m′′A′|‖m‖ =

| − (m′′)2

m′ A′′ −m′′A′|‖m‖ = | −m′′Rm(A)|‖m‖. (15)

Correctness of expressions (14) and (15) is ensured by the condition

(m′, ‖m‖) = 1 following from the theorem condition (m′, m′′) = 1. Sub-

stitution (14) and (15) into (9) leads to the required outcome (12).

Theorem 2 can be also generalized to a case of arbitrary complex module

m. However, for computer applications classes of the modules considered in

the theorem 2 are the most acceptable.
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Theorem 3. The complete set of residues 〈·|m is isomorphic, correspond-

ingly:

a) to the combinatorial square (| · |m)2 of the ring | · |m in the case when

a natural module m > 1;
b) to the ring | · |‖m‖ in the case when m = m′ + im′′ is a complex module

satisfying the condition (m′, m′′) = 1 with |〈·|| = ‖m‖ .

Proof. According to the main theorem of modular arithmetic [6, 7] in the

case of natural module m, the mapping f : | · |m × | · |m → 〈·|m, which for

every A = A′ + iA′′ ∈ Γ associates to a pair of IRN (|A′|m; |A′′|m) ∈ (| · |m)2

a complex residue 〈A|m ∈ 〈·|m de�ned by formula (11), is bijective. Then on

account of surjectivity of mapping A→ (|A′|m; |A′′|m), the cardinality of ring

〈·|m coincides with the cardinality of a set | · |m×|· |m, i.e. |〈·||m = m2 = ‖m‖.

This formula also takes place in the case when the complex module m
satis�es the condition (m′, m′′) = 1, because of surjectivity of mapping

A → Rm(A′, A′′) (see (13)) and bijectivity of mapping f : | · |‖m‖ → 〈·|m
which for every A ∈ Γ associates the complex residue 〈A|m formed by a rule

(12) with an IRN R(A′, A′′) ∈ | · |‖m‖.
The fact that the speci�ed-above mapping f is an isomorphism of corre-

sponding rings in the case of the real module m is proved by equations

〈〈A′ + iA′′|m + 〈B′ + iB′′|m|m = ||A′|m + |B′|m|m + i||A′′|m + |B′′|m|m,

〈〈A′ + iA′′|m · 〈B′ + iB′′|m|m = ||A′|m · |B′|m − |A′′|m · |B′′|m|m+

i||A′|m · |B′′|m + |A′′|m · |B′|m|m,

and in the case of complex module m = m′ + im′′ such that (m′, m′′) = 1, is
proved by equations

Rm(A+B) = Rm(Re(A+B), Im(A+B)) =

|A′ +B′ + J(A′′ +B′′)|m = |Rm(A) +Rm(B)|‖m‖, (16)

Rm(A ·B) = Rm(Re(A ·B), Im(A ·B)) =

Rm(A′B′ −A′′B′′, A′B′′ +A′′B′) = |A′B′ −A′′B′′ + J(A′B′′ +A′′B′)|‖m‖ =

|A′(B′ + JB′′) +A′′(−B′′ + JB′)|‖m‖ = |A′Rm(B) +A′′(J2B′′ + JB′)|‖m‖ =

|A′Rm(B) + JA′′Rm(B)|‖m‖ = |(A′ + JA′′)Rm(B)|‖m‖ =

|Rm(A)Rm(B)|‖m‖. (17)
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It follows from (8) that the considered CSR 〈·| is formed by all the ICN

α = α′ + iα′′ satisfying simultaneous inequalities{
0 ≤ m′α′ +m′′α′′ < ‖m‖,
0 ≤ m′α′′ −m′′α′ < ‖m‖.

Thus, the ring 〈·|m includes all the ICN arranged in a square with vertexes

A1 = (0; 0), A2 = (m′; m′′), A3 = (m′ −m′′; m′ +m′′), A4 = (−m′′; m′).

For the computer applications of interest are those complex modular num-

ber systems (CMNS) for which the ranges 〈·|Mk
, where Mk =

k∏
i=1

mi with

m1,m2...,mk being pairwise coprime modules, are located in the speci�ed-

above squares with the sides parallel to the axes. This means that Mk is an

IRN. However, the present condition does not eliminate a possibility of using

the ICN as modules mi, i = 1, 2, . . . , k.
In particular, for practical applications it is convenient to use the CMNS

with modules m1,m2, . . . ,mk such that all or part of them are considered as

macromodules which represent products of two conjugated ICN, i.e. m = pp̄
where p = p′ + ip′′, p̄ = p′ − ip′′; p′, p′′ ∈ Z. In accordance with theorems

2 and 3, it is expedient to select the numbers p and p̄ based on conditions

p′ > 0, p′′ > 0 and (p′, p′′) = 1. The last condition guarantees relative

primality of the ICN p and p̄. Such systems are called quadratic MNS.
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Abstract. In this paper we present the proof system, called the valuation graphs sys-

tem, which is a new version of two proof procedures: Davis-Putnam and Stålmarck.

The novelty is that in the rules we note which propositional variable occurring in

some propositional formula does not determine the logical value of that formula.

Due to Stålmarck, we de�ne a notion of proof width, corresponding to the width of

structure of valuation graph which is a number of applications of dilemma rule. The

dilemma rule considers two cases, so the time of proof grows up exponentially.

1. Introduction

In recent years, there has been considerable renewed interest in the SATis-

�ability problem of propositional logic. The SAT is the question whether

a propositional formula has a satisfying valuation. The SAT problem is known

to be di�cult to solve � it is the �rst known NP-complete problem, as it was

proved by Stephen Cook in 1971. Because the SAT problem is fundamental

to many practical problems in mathematics, computer science, and electrical

engineering, e�cient methods that can solve a large subset of SAT problems

are eagerly sought. There are many competing algorithms for it and many

implementations, most of them have been developed over the last two decades

as highly optimized versions of the DPLL procedure of [3] and [4]. As a moti-

vation, we refer to the Stålmarck patented method [7] for solving the proposi-

tional satis�ability problem in practical applications. For instance, it has been

used successfully for industrial-scale problems [2]. This is the algorithm which

is acceptably e�cient in a large number of important cases (proof width).
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Moreover, the algorithm itself is not yet widely known, and it is interesting

to investigate how it performs. We have tried to do this, and the valua-

tion graphs system has been created as a new version of Stålmarck procedure

[1, 5, 6, 8].

The paper is organised as follows. Next section provides the preliminary

notions. The de�nitions and rules of building the valuation graph are shown

in section 3. In section 4 we give proofs of soundness and completness of our

system. Section 5 presents the complexity of valuations graphs procedure.

Section 6 completes the paper with some conclusions and future work.

2. Preliminary notions

We de�ne the valuation graphs for propositional formulas which are built with

logical connective →, called implication, and the false symbol F. The true

symbol T can be de�ned as a formula: F → F. Every propositional formula

can be equivalently translated, in linear time, to implication form applying

the Stålmarck procedure [6] and the following equivalences:

p ∨ q ↔ ¬ p→ q

p ∧ q ↔ ¬ (p→ ¬ q)
¬ ¬ p ↔ p

¬ p ↔ p→ F

Due to Stålmarck, every implication will be a triplet (c, β, γ), eventually with

indices, where β and γ are subformulas and c is a new propositional variable

which value is equivalent to the value of implication β → γ; so c ↔ (β →
γ). Each propositional formula α in implication form will be represented by

a sequence d̄ = (d1, . . . ,dn), where di is a triplet (ci, βi, γi) for 1 � i � n,
dn is a main implication, n is the number of occurrences → in α. Then βi
and γi can be propositional variables p, q, r, . . . , propositional constants F or

T or a new triplet variable cj . By |d̄| we denote the number of triplets in the

sequence d̄ (|d̄| = n). Our procedure inputs a propositional formula α in the

following form:

d : c1 ↔ (β1 → γ1)︸ ︷︷ ︸
d1

, c2 ↔ (β2 → γ2)︸ ︷︷ ︸
d2

, . . . , cn ↔ (βn → γ1)︸ ︷︷ ︸
dn

.

To check if the given formula is satis�able, we construct its satisfying valuation.

If constructing is failure, the propositional formula is unsatis�able. Instead

of the value of propositional variable p, we will say about substitution of

propositional constant: p:=F or p:=T. Similarly, by p:=q or p:=−q we denote
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substitution of p. By �−p� we denote value of p contrary to its present value.

For simplicity we will write �=� instead �:=�. The substitution sets will be

denoted by Σ,∆, . . . , eventually with indices. By β√ we denote a substitution

of one of the constants {T, F} in place of β. This means that we do not

need a value of β to determine a value of whole propositional formula. If in

Σ we have contradiction of one of the form: x=−x; or x=T and x=F; or
x=y and x=−y for some propositional variables x and y, then we denote this

contradiction by ⊥x and we say that Σ is contradictory (we replace Σ by ⊥).

3. Rules and de�nitions

First, in this section we present the rules of substitution of propositional val-

ues (constant) according to the truth table of →: the reduction rules (RR)

and the dilemma rule (RD). Next we de�ne a valuation graph.

In general, the reduction rule has the following form:

d [ Σ ]
[ Σ′ ]

,

where d is a some triplet in a sequence of triplets representing a propositional

formula α which tautology/satis�ability we check, and Σ′ comes from Σ by

adding the conclusions of that rule.

The special cases of THE REDUCTION RULES:

F ↔ (β → γ)
β = T, γ = F

(RR1)
c↔ (β → T)
c = T, β√

(RR2)

c↔ (F → γ)
c = T, γ√

(RR3)
c↔ (T → γ)

c = γ
(RR4)

c↔ (β → F)
c = −β (RR5)

c↔ (c→ γ)
c = T, γ = T

(RR6)

c↔ (β → β)
c = T, β√

(RR7)

In each reduction rule we have given some triplet representing subformula of

propositional formula α, and a set of substitutions Σ. In particular, subfor-

mulas β and γ can be logical constants. Conclusions (substitutions) of each
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reduction rule are added to the set Σ, and the sequence of triplets representing

α is reduced by removing the given triplet. Moreover, the RR2, RR3 and RR7

rules say that the value of implication does not depend on its subformulas.

The logical value of implication, so the value of a triplet variable representing

this implication too, can be sometimes deduced from the partial valuation

with logical constants occurring in implication. Thus, in all of those rules the

logical constant T substitutes a triplet variable.

As can be seen above, the reduction rules are not limited to deduce conclu-

sions of the form: β is T and γ is F (see RR1), but includes also conclusions

of the form: c has the same value as γ (see RR4) or c and β have di�erent

values (see RR5).

THE DILEMMA RULE:

d̄[Σ]

d̄[Σ ∪ {x = T}]
∣∣∣ d̄[Σ ∪ {x = F}]

(RD)

where x occurs in a sequence d̄ and for x there does not exist substitution in Σ.

When we cannot apply any reduction rule in a sequence, we have to use the

dilemma rule. Then we obtain two sets of substitutions which arise from

the set Σ: the �rst one by adding x=T and the second by adding x=F. The
dilemma rule is used to the variable from a sequence of a triplets if there does

not exist a substitution in Σ for this variable. So, the sequence will not be re-

duced. Only one of substitutions of variable x is true, so we have the dilemma

which set of substitutions is searched by us. Now, a merger of both sets of

substitutions is necessary (see de�nition 1).

By d̄[Σ] we denote the lable of a vertex of a valuation graph which is de�ned

by induction on the length of propositional formula.

De�nition 1. Let d̄ be a �nite sequence of triplets (d1, d2, . . . , dn) represent-
ing propositional formula α and Σ = ∅.

1. The single vertex labeled by d̄[Σ∪{cn=F}] is the valuation graph for α.

2. If G is a valuation graph for α, d̄[Σ] is a label of a leaf, and G∗ arises

from G by adding a new vertex (and an edge from it to the leaf d̄[Σ])
labeled by d̄′[Σ′], which is deduced by applying one of the reduction

rules, then G∗ is the valuation graph for α.
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3. If G is the valuation graph for α, d̄[Σ] is a label of a leaf, and G∗ arises

from G by adding two new vertices (and two edges from them to the

leaf d̄[Σ], respectively) labeled by d̄[Σ ∪ {β = T}] and d̄[Σ ∪ {β = F}],
which are deduced by applying dilemma rule, then G∗ is the valuation

graph for α.

4. If G is the valuation graph for α and d̄1[∆1] and d̄2[∆2] are labels

of leaves in G obtained from vertices labeled by d̄[Σ ∪ {β = T}] and
d̄[Σ ∪ {β = F}], respectively; d̄1 and d̄2 are empty sequences or in the

set of substitutions there exists a contradictory, then G∗ is the valuation
graph for α obtained from G by adding a new vertex (and edge from it

to those leaves) labeled by d̄[∆], where

∆ =



⊥ when ∆1 and ∆2 are contradictory

∆1 when ∆2 is contradictory and

∆1 is not contradictory

∆2 when ∆1 is contradictory and

∆2 is not contradictory

(∆1 ∩∆2) ∪ {α = γ} if ∆1 and ∆2 are not contradictory and

{α = γ} occurs on one of the paths

and α√ occurs on the second,

simultaneously

(∆1 ∩∆2) ∪ {β√} when ∆1 and ∆2 are not contradictory

and ∆1 ∩∆2 = Σ

∆1 ∩∆2 otherwise, in particular,

when ∆1 and ∆2 are not contradictory

The set of substitutions ∆ of path Θ of valuation graph G is a conjunction

of substitutions, and the set of triplets d̄ is a conjunction of triplets.

De�nition 2. The path Θ of valuation graph G is closed when the set of

substitutions ∆ of this path is contradictory.

De�nition 3. The path Θ of valuation graph G is maximal when the set of

triplets of this path is empty and the set of substitutions includes substitu-

tions of all the propositional variables.

De�nition 4. The valuation graph G is closed when all its paths are closed.

De�nition 5. The valuation graph G is maximal when it is not closed.

In other words, if the maximal path exists in a valuation graph, then the val-

uation graph is maximal.
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De�nition 6. Proof of propositional formula α is the closed valuation graph

for α.

To check if α is a tautology, we try to construct a model for ¬α, i.e. we build
a valuation v such that v(¬α) = 1. The valuation will be meant as a set

of substitutions in which every propositional variable occurring in formula α
has a substitution. Building the valuation, we start from substitution F into

triplet variable representing the whole formula. Every next substitution is

a conclusion of the reduction rules or the dilemma rule. If the set of substitu-

tions includes contradictory, then α is a tautology, otherwise v is a model for

¬α.

Example 1. The formula (p b1−→ p) in implication form is represented by

the triplet (b1, p, p). Building a valuation graph (Figure 1), we start from

single vertex (I) labeled by a sequence of triplets, and the set of substitutions

contains only the substitution F into b1. The triplet and the substitution

b1 = F are premises of the reduction rule RR1. Thus, the conclusions of those

rules are added to the set of substitutions, and the triplet (b1, p, p) is removed

from a sequence of triplets (II). Now we have empty sequence of triplets and

contradictory ⊥p in the set of substitution (p = F and p = T). So, the set of

substitutions is contradictory. Therefore, we have built the closed valuation

graph for p → p, so the formula p → p has the proof in the valuation graphs

system.

I ((b1, p, p))[b1 = F]

(RR1b1)

II (∅)[b1 = F, p = T, p = F]

III (∅)[b1 = F,⊥p]

IV (∅)[⊥]

Figure 1. The closed valuation graph.

Example 2. For the propositional formula:

(p b4−→ p) b5−→ (((p b1−→ q) b2−→ p) b3−→ q)

we get the following sequence of triplets:(
(b1, p, q), (b2, b1, p), (b3, b2, q), (b4, p, p), (b5, b4, b3)

)
.
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Now we are constructing the valuation graph:

Let Σ = ∅,∆1 = ∅,∆2 = ∅

((b1, p, q), (b2, b1, p), (b3, b2, q), (b4, p, p), (b5, b4, b3)) [ Σ ∪ {b5 = F}]
(RR1b5)

((b1, p, q), (b2, b1, p), (b3, b2, q), (b4, p, p)) [ Σ ∪ {b4 = T, b3 = F}]
(RR1b3)

(b1, p, q), (b2, b1, p), (b4, p, p)) [ Σ ∪ {b2 = T, q = F}]
(RR7b4)

((b1, p, q), (b2, b1, p)) [ Σ ∪ {b4 = T, p√}]

(RR5b1)

((b2, b1, p))[ Σ ∪ {b1 = −p}]

✟✟✟✟
(RDp) ❍❍❍❍

((b2, b1, p)) [ ∆1 ∪Σ ∪ {p = T}] ((b2, b1, p)) [ ∆2 ∪ Σ ∪ {p = F}]
(RR2b2) (RR5b2)

(∅)[ ∆1 ∪ {b2 = T, b1√}] (∅)[ ∆2 ∪ {b2 = −b1}]

(∅)[ ∆2 ∪ ⊥b2 ]

(∅)[⊥]

✟✟✟✟
❍❍❍❍

((b2, b1, p))[ Σ ∪∆1]
(RR5b2)

(∅) [ Σ ∪ {b2 = T, b1√]

Figure 2. The maximal valuation graph.

4. Soundness and completness of valuation graphs
system

Theorem 1 (Soundness). If there exists a proof for α in the valuation

graphs system, then α is a tautology.

Proof: From the assumption that a proof for α exists in the valuation graphs

system it follows that α has a closed valuation graph. Because the valuation

graph representing all valuations is closed, every path in this graph is closed.

Thus, contradictory occurs in the every path. So α is a tautology.
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Theorem 2 (Completness). If α is a tautology, then a proof of valuation

graphs system exists for α.

Proof: We assume that α is a tautology and there does not exist the proof for

α in the valuation graphs system. This means that any valuation graph is not

closed. Thus, in each valuation graph for α the contradictory does not occur

at least in one path. Let G be one of valuation graphs for α. Because G has

a path, which does not include a contradictory, hence the set of substitutions

in label of leaf of this path contains the substitutions for all variables occur-

ring in the triplet form of this formula. In particular, there are substitutions

for propositional variables, subformulas and the whole formula α (because we

have started building of valuation graph from bn = F added to G). Thus,

a valuation υ, constructed above, is a model for ¬α. It is a contradictory to

the assumption that α is a tautology.

The valuation graphs system with the reduction rules and the dilemma rule is

sound and complete for propositional formulas built of propositional variable,

implication and logical constant. Each propositional formula can be trans-

lated to implication form by applying the Stålmarck procedure (see [6]) in

linear time. So the valuation graphs system is sound and complete for classi-

cal propositional logic.

Corollary 1. A propositional formula α is satis�able i� a valuation graphs

system G for ¬α is maximal.

Proof: A propositional formula α is satis�able i� (by de�nition) there exists

a Boolean valuation v such that α is true i� (by de�nition) a valuation graph

for ¬α is maximal.

5. Complexity of procedure of valuation graphs
system

The valuation graphs system allows searching for proofs and models for large

class of formulas in linear or polynomial time with respect to the length of

formula and width of its (maximal or closed) valuation graph. This estima-

tion follows from analysis of branching valuation graphs of those formulas and

depends exponentially on the width of valuation graph but not on the length

of formula.

By representation of structure of valuation graph we mean its substructure

consisted of vertices which labels are premises of the dilemma rule, its direct

consequences and vertices of their merger (see item 4 of de�nition of valuation

graph). Notice that for some valuation graph its representation of structure is
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unique. Consider all the possible substructures of representation of structure

for some valuation graph. We associate each substructures with the number

of leaves.

De�nition 7. A width of valuation graph is the maximal number of leaves

by all substructures of its representation of structure.

De�nition 8. A formula α is i-hard when there exists a maximal or closed

valuation graph for α with the width equal to i+ 1.

By de�nition 8, a formula is 1-hard when in its valuation graph we apply the

dilemma rule once (by de�nition 7, the width of this valuation graph is equal

to 2).

The time of building of valuation graph is growing up when a valuation graph

branches. Due to Stålmarck, we present the recursively function of complexity:

g(0, n) = 2 · n,

g(k, n) =
n∑

i=1

2 · i · g(k − 1, n),

where: n is a length of formula,

k is a width of valuation graph.

The function g(k, n) is at most n2k+1, so the complexity of the presented

procedure is O(n2k+1).

6. Conclusions and future work

In the valuation graphs system the time of �nding a satisfying valuation de-

pends exponentially on the width of valuation graph but not on a length of

formula. A width of valuation graph depends on the number of applications of

dilemma rule. Hence, the best place for optimisation is a place where we must

choose a propositional variable (a triplet variable representing a propositional

formula) as a premise of the dilemma rule.

The valuation graphs system was implemented and the prototype version is

tested. We are working out at experimental results which will be presented

soon.
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Abstract. We investigate processor sharing queueing systems with non-homogeneous

customers having some random space requirements. Such systems have been used to

model and solve various practical problems occurring in the design of computer or

communicating systems. The above non-homogenity means that each customer (in-

dependently of others) has some random space requirement and his length (or amount

of work for his service) generally depends on the space requirement. In real systems,

a total sum of space requirements of customers presenting in the system is limited

by some constant value (memory capacity) V > 0. We estimate loss characteristcs

for such a system using queueing models with unlimited memory space.

1. Introduction

Egalitarian processor sharing (EPS) systems are used for modeling of com-

puter and communicating networks [1]. Presently, they are applicable to situ-

ations where a common resource is shared by a varying number of concurrent

users [2] (for example, to WEB-servers modeling [3]).

The EPS discipline was �rst introduced by Kleinrock [4] as a limiting case

for modeling time sharing systems. The aim of the paper is to analyze classical

and non-classical EPS systems. First, we shall analyze the classical EPS

system notated by M/G/1−EPS. All the customers present in the classical

M/G/1−EPS system are served simultaneously. If there are n > 1 customers

in the system at an arbitrary instant, then all of them are served at this instant

n times slowly than in the case of n = 1.
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Later on, the customer length means the amount of work necessary for

customer's service, i.e. the service time under condition that there are no

other customers in the system during his presence in it. Analogously, the

residual length of the customer means his residual service time after some

time instant under the same condition (see [2]).

We introduce the following additional assumption for the classical

M/G/1−EPS system. Assume that each customer is characterized by some

non-negative random capacity. This random variable can be interpreted as

a part of system's memory space used by the customer during his presence in

the system. A total sum of customer capacities σ(t) in the system at arbitrary

time t is referred as the total customers capacity.

The random value σ(t) can be limited by some constant value V
(0 < V < ∞), which is called the memory volume of the system. In this

case we have a non-classical processor sharing system that will be notated by

M/G/1(V )− EPS.
The purpose of the paper is

1) to obtain the non-stationary and stationary distribution of total cus-

tomers capacity in the system M/G/1 − EPS;
2) to determine some estimations of loss characteristics for systems

M/G/1(V )−EPS with limited memory space (V <∞) based on the model

with unlimited one;

3) to compare processor sharing systems M/G/1(V ) − EPS and

M/G/1 − EPS from the viewpoint of estimation of loss characteristics.

2. Classical processor sharing system

In this section we investigate the classical system M/G/1−EPS. Denote by
η(t) the number of customers present in the system at time t and by ξ∗i (t) the
residual length of the ith customer at this time, i = 1, η(t). Let

F (x, t) = P{ζ < x, ξ < t}

be the joint distribution function of the customer capacity ζ and his length

ξ (we assume that customer's capacity and his length do not depend on his

arrival time and on characteristics of other customers). Then L(x) = F (x,∞)
and B(t) = F (∞, t) are the distribution functions of the random variables ζ
and ξ, respectively. Let a be an arrival rate of entrance �ow of customers,

α(s, q) =
∫ ∞

0

∫ ∞

0
e−sx−qtdF (x, t)

be the double Laplace-Stieltjes transform (with respect to x and t) of the dis-
tribution function F (x, t), ϕ(s) = α(s, 0), and β(q) = α(0, q) be the Laplace-
Stieltjes transform of the distributin functions L(x) and B(t), respectively.
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D(x, t) = P{σ(t) < x} is the distribution function of total customers capacity

at time t,

δ(s, t) = Ee−sσ(t) =
∫ ∞

0
e−sxdxD(x, t)

is the Laplace-Stieltjes transform of the function D(x, t) with respect to x,

δ(s, q) =
∫ ∞

0
e−qtEe−sσ(t)dt =

∫ ∞

0
e−qtδ(s, t)dt

is the Laplace transform of the function δ(s, t) with respect to t.
The mixed (i+j)th moments of the random variables ζ and ξ (if they exist)

take the form:

αi j = E(ζiξj) = (−1)i+j ∂i+j

∂si∂qj
α(s, q)

∣∣∣
s=0,q=0

.

Assume that customers in the considered system at an arbitrary time t are
numerated as random; i.e. if the number of customers is k, then there are k!
ways to enumerate them, and each enumeration can be chosen with the same

probability 1/k!.
One can easily show that the system under consideration is described by

the Markov process

(η(t), ξ∗i (t), i = 1, η(t)), (1)

where components ξ∗i (t) are absent if η(t) = 0. In this case we also have

σ(t) = 0.
In what follows, to simplify the notation, we denote Yk = (y1, . . . , yk).

Sometimes in the case k = 1, instead of Y1 we write y1 or the value that

this component takes, and in the case k = 2, instead of Y2 we write (y1, y2) or
their values. In other words, we sometimes specify vectors of small dimensions

by indicating their components. We also use the notation (y1, . . . , yk, u) =
= (Yk, u).

We characterize the process (1) by functions with the following probabilistic

sense:

P0(t) = P{η(t) = 0}; (2)

Θk(Yk, t) = P{η(t) = k, ξ∗j (t) < yj, j = 1, k}, k = 1, 2, . . . ; (3)

Pk(t) = P{η(t) = k} = Θk(∞k, t), k = 1, 2, . . . , (4)

where ∞k = (∞, . . . ,∞) is a k-component vector.

Note that the functions Θk(Yk, t) are symmetric with respect to permu-

tations of components of the vector Yk due to our random enumeration of

customers in the system.
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Let us determine the function δ(s, q) under zero initial condition η(0) =
= σ(0) = 0.

Denote by p0(q) =
∫ ∞

0
e−qtP0(t)dt and θk(Yk, q) =

∫ ∞

0
e−qtΘk(Yk, t)dt

the Laplace transforms with respect to t of the functions P0(t) and Θk(Yk, t),
respectively. It is known (see [2]) that

p0(q) = [q + a− aπ(q)]−1 (5)

under zero initial condition, where π(q) is the Laplace-Stieltjes transform

of the busy period distribution function for the system under considera-

tion. Note [2] that π(q) is a unique solution of the functional equation

π(q) = β(q + a− aπ(q)) such that |π(q)| ≤ 1.
Lemma 1. Under zero initial condition, the functions θk(Yk, q), where

k = 1, 2, . . . , have the following form:

θk(Yk, q) = p0(q)
k∏

i=1

∫ yi

0
[q + a− aB(u)]du.

Proof. Using the method of auxiliary variables [5] and taking into account

the symmetric property of the functions Θk(Yk, t), we can write out partial

di�erential equations for functions (3):

∂Θ1(y, t)
∂t

− ∂Θ1(y, t)
∂y

+
∂Θ1(y, t)

∂y

∣∣∣∣
y=0

= aP0(t)B(y)− aΘ1(y, t)+

+
∂Θ2(y, u, t)

∂u

∣∣∣∣
u=0

; (6)

∂Θk(Yk, t)
∂t

− ∂Θk(Yk, t)
∂yk

+
∂Θk(Yk, t)

∂yk

∣∣∣∣
yk=0

= aΘk−1(Yk−1, t)B(yk)−

−aΘk(Yk, t) +
∂Θk+1((Yk, u), t)

∂u

∣∣∣∣
u=0

, k = 2, 3, . . . . (7)

Passing to Laplace transform in the equations (6), (7), we obtain

−∂θ1(y, q)
∂y

= ap0(q)B(y)− (q + a)θ1(y, q)−
∂θ1(y, q)

∂y

∣∣∣∣
y=0

+

+
∂θ2(y, u, q)

∂u

∣∣∣∣
u=0

; (8)

−∂θk(Yk, q)
∂yk

= aθk−1(Yk−1, q)B(yk)− (q + a)θk(Yk, q)−
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−∂θk(Yk, q)
∂yk

∣∣∣∣
yk=0

+
∂θk+1((Yk, u), q)

∂u

∣∣∣∣
u=0

, k = 2, 3, . . . . (9)

By direct substitution, we can prove that the solution of Eqs. (8) and (9)

has the form

θk(Yk, q) = C(q)
k∏

i=1

∫ yi

0
[q + a− aB(u)]du, (10)

where C(q) is some function that can be determined if we substitute the

relation (10) into Eq. (8). Then, we have C(q) = p0(q).
The lemma is proved.

Let βi = Eξi = (−1)iβ(i)(0) be the ith moment of the customer length,

i = 1, 2, . . . .
Corollary 1. If ρ = aβ1 < 1, then the limits θk(Yk) = lim

t→∞Θk(Yk, t),
k = 1, 2, . . . , exist being independent of initial condition and have the form:

θk(Yk) = (1− ρ)ak
k∏

i=1

∫ yi

0
[1−B(u)]du.

Proof. If ρ < 1, then the process (1) is regenerative with points of re-

generation coinciding with epochs of termination of busy periods. It follows

from the theory of regenerative processes [6] that the limit lim
t→∞Θk(Yk, t) =

= θk(Yk) exists and

θk(Yk) = lim
q→0

qθk(Yk, q) = (1− ρ)ak
k∏

i=1

∫ yi

0
[1−B(u)]du.

Corollary 2. Let pk(q) be the Laplace transform of the function Pk(t),
k = 0, 1, . . . , under zero initial condition. Then we have

pk(q) =
ak(1− π(q))k

(q + a− aπ(q))k+1
.

Proof. It is obvious that pk(q) = θk(∞k, q). Let us prove the equality∫ ∞

0
(q + a− aB(y))dy =

a(1− π(q))
q + a− aπ(q)

. (11)

It follows from the normalization condition written in terms of Laplace trans-

forms that

p0(q) +
∞∑
k=1

θk(∞k, q) = 1/q,
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whence, taking into account the result of lemma 1, we obtain:

1 +
∞∑
k=1

[∫ ∞

0
(q + a− aB(y))dy

]k
=

1
q
[q + a− aπ(q)].

From the last relation we have (11). Now, the statement of the corollary

follows from formulae (5) and (10).

From corollary 1 we can obtain the known relation for the stationary dis-

tribution {pk} of the number of customers in the system (ρ = aβ1 < 1)[2]:

pk = θk(∞k) = (1− ρ)ρk, k = 0, 1, . . . .

Let χ(t) be the capacity of a customer being on service at the time t and
ξ∗(t) be the residual length of this customer at the time t. We shall use the

notation Ey(x) = P{χ(t) < x| ξ∗(t) = y}. It is known [7] that the Laplace�

Stieltjes transform of the conditional distribution function Ey(x) has the form:

ey(s) = [1−B(y)]−1

∫ ∞

x=0
e−sx

∫ ∞

u=y
dF (x, u). (12)

We introduce the notation

dYk
Θk(Yk, t) = P{η(t) = k, ξ∗i (t) ∈ [yi, yi + dyi), i = 1, k} =

=
∂kΘk(Yk, t)
∂y1 . . . ∂yk

dy1 . . . dyk.

Later on, we use the notation ∗
i=1

k
Ri(x) for Stieltjes convolution of distribution

functions Ri(x), i = 1, 2, . . . , Ri(x) = 0, if x ≤ 0.
Theorem 1. For zero initial condition, the function δ(s, q) is determined

by the relation

δ(s, q) = {[q + a− aπ(q)][1 − I(s, q)]}−1,

where

I(s, q) =
∫ ∞

0
(q + a− aB(y))ey(s)dy

and ey(s) is determined by relation (12).

Proof. The distribution function D(x, t) can be represented as

D(x, t) = P0(t)+

+
∞∑
k=1

∫ ∞

0
· · ·

∫ ∞

0
P{σ(t) < x| η(t) = k, ξ∗i (t) = yi, i = 1, k}dYk

Θk(Yk, t).
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From the random enumeration of components of the vector Yk it is obvious

that

P{σ(t) < x| η(t) = k, ξ∗i (t) = yi, i = 1, k} = ∗
i=1

k
Eyi(x).

Then we get:

D(x, t) = P0(t) +
∞∑
k=1

∫ ∞

0
· · ·

∫ ∞

0
∗
i=1

k
Eyi(x)dYk

Θk(Yk, t).

Passing in the last relation to Laplace�Stieltjes transform with respect to x,
we have:

δ(s, t) = P0(t) +
∞∑
k=1

∫ ∞

0
· · ·

∫ ∞

0

k∏
i=1

eyi(s)dYk
Θk(Yk, t).

Passing to Laplace transform with respect to t, we obtain:

δ(s, q) = p0(q) +
∞∑
k=1

∫ ∞

0
· · ·

∫ ∞

0

k∏
i=1

eyi(s)dYk
θk(Yk, q),

where dYk
θk(Yk, q) = p0(q)

k∏
i=1

[q + a− aB(yi)]dyi (it follows from Eq. (8) and

the relation C(q) = p0(q)). Then we get:

δ(s, q) = p0(q) + p0(q)
∞∑
k=1

∫ ∞

0
· · ·

∫ ∞

0

k∏
i=1

eyi(s)[q + a− aB(yi)]dyi =

= p0(q)

{
1 +

∞∑
k=1

[∫ ∞

0
(q + a− aB(y))ey(s)dy

]k}
=

= p0(q)

[
1 +

∞∑
k=1

(I(s, q))k
]
, (13)

where

I(s, q) =
∫ ∞

0
(q + a− aB(y))ey(s)dy.

Now, the statement of the theorem follows from formula (13).

Corollary 3. If the random variables ζ and ξ are independent, we obtain:

δ(s, q) = [q + a(1− π(q))(1 − ϕ(s))]−1. (14)
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Proof. In this case, taking into account Equation (12) and the relation

F (x, t) = L(x)B(t), we have that

I(s, q) =
∫ ∞

y=0

q + a− aB(y)
1−B(y)

∫ ∞

x=0
e−sx

∫ ∞

u=y
dF (x, u) =

= ϕ(s)
∫ ∞

0
[q + a− aB(y)]dy =

aϕ(s)(1− π(q))
q + a− aπ(q)

,

whence relation (14) follows.

Corollary 4. Under zero initial condition, the Laplace transform g(s, q)

with respect to t of generation function P (z, t) =
∞∑
k=0

Pk(t)zk, |z| ≤ 1, of the

customers number in the system at time t has the following form:

g(z, q) =
∫ ∞

0
e−qtP (z, t)dt = [q + a(1− z)(1− π(q))]−1. (15)

Proof. It follows from corollary 1 that in the case when the customer

length does not depend on his capacity and the capacity is equal to 1, we have

ϕ(s) = e−s and

δ(s, q) = [q + a(1− π(q))(1 − e−s)]−1 =

=
∫ ∞

0
e−qtEe−sσ(t)dt =

∫ ∞

0
e−qtP (e−s, t)dt,

whence Eq. (15) follows if we substitute e−s by z.

Corollary 5. Let ρ = aβ1 < 1. Then stationary mode exists. The Laplace�

Stieltjes transform δ(s) of the stationary distribution function

D(x) = limt→∞D(x, t) of customers total capacity has the form:

δ(s) =
1− ρ

1 + aα′
q(s, q)|q=0

. (16)

Note that relation (16) was �rst obtained by Sengupta [8].

Proof. It follows from the theory of regenerative processes [6] that the

limit δ(s) = limt→∞ δ(s, t) exists and

δ(s) = lim
q→0

qδ(s, q) = (1− ρ) lim
q→0

[1− I(s, q)]−1,

where, as it follows from theorem 1,
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lim
q→0

I(s, q) = a

∫ ∞

0
[1−B(y)]ey(s)dy =

= a

∫ ∞

x=0

∫ ∞

u=0
ue−sxdF (x, u) = −aα′

q(s, q)|q=0,

whence the statement of the corollary follows.

Corollary 6. Let δ1(t) be the �rst moment of the total customers capacity

σ(t) under zero initial condition, δ1(q) be the Laplace transform of the function

δ1(t). Then we have:

δ1(q) =
aα11 + q

∫∞
0

∫∞
0 xS(t)dF (x, t)

[q + a− aπ(q)]
[
1− ρ− q

∫∞
0 S(t)dB(t)

]2 ,
where S(t) =

∫ t

0
[1−B(y)]−1dy.

Let σ be a stationary total customers capacity (σ(t) ⇒ σ in the sense of

a weak convergence). The following known formulae [8]

δ1 = Eσ = −δ′(0) = aα11

1− ρ
, δ2 = Eσ2 = δ′′(0) =

aα21

1− ρ
+ 2δ21 (17)

can be obtained from relation (16).

For some special cases we can get the distribution function D(x) from

formula (16). For example, consider the case when customer's capacity ζ and
his length ξ are connected by the relation ξ = cζ+ξ1, c > 0, where the random
variables ζ and ξ1 are independent (such dependence for customer's capacity

and his length is true for many real information systems).

Denote by κ1 = Eξ1 the �rst moment of the random variable ξ1. In this case
we have α(s, q) = ϕ(s+ cq)κ(s), where κ(s) is the Laplace�Stieltjes transform
of the distribution function of the random variable ξ1. Then relation (16)

takes the following form:

δ(s) =
1− ρ

1 + a[cϕ′(s)− κ1ϕ(s)]
. (18)

Assume that customer capacity ζ has an exponential distribution with the

parameter f > 0. Then from formula (18) we obtain:

δ(s) =
(1− ρ)(s+ f)2

(s+ f)2 − ρ1f2 − ρ2f(s+ f)
,

where ρ1 = ac/f , ρ2 = aκ1, so that ρ = aβ1 = ρ1 + ρ2.
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Now we can determine the inverse Laplace transform of δ(s)/s, where

δ(s) is de�ned by formula (18), and obtain the stationary distribution

function D(x):

D(x) = 1− (1− ρ)e−fx

2b

[
(ρ2 + b)2e(ρ2+b)fx/2

2− ρ2 − b
− (ρ2 − b)2e(ρ2−b)fx/2

2− ρ2 + b

]
, (19)

where b =
√
ρ2
2 + 4ρ1.

3. Estimation of loss characteristics

The M/G/1 − EPS is a system without losing of customers (V = ∞). But

with the help of this model we can estimate the memory capacity V in order

to guarantee inexceeding of given loss probability.

Assume that we have a stationary queueing system Q∞ with Poisson en-

trance �ow without losses of customers. Let QV be a stationary system that

di�ers from Q∞ only with the fact that its total capacity is limited by the

constant value V . We denote by D(x) the distribution function of total cus-

tomers capacity for the system Q∞ and by DV (x) the distribution function of

this random value for the system QV .

Theorem 2. The inequality D(x) ≤ DV (x) takes place for all x > 0.
Proof of the theorem can be found in [7].

It follows from theorem 2 that the loss probability P for the system QV

satis�es the following inequality [7]:

P = 1−
∫ V

0
DV (V − x)dL(x) ≤ 1−

∫ V

0
D(V − x)dL(x) = P ∗. (20)

Thus, the value P ∗ is an upper estimation of loss probability for the system

QV . If we choose V under condition that P ∗ is given so that the equality∫ V

0
D(V − x)dL(x) = 1− P ∗

is satis�ed, then the real loss probability P does not exceed P ∗. If only very

rare losses are permitted in the system under consideration, the di�erence

between the values P and P ∗ is inessential.

Note that the loss probability is not exhaustive characteristic of losses,

because its value shows a part of lost customers, not a part of lost capacity

or, in other words, information being lost. Really, it is obvious that customers

having large capacity will be lost more often. Therefore, more objective losses

estimation is the value

Q = 1− 1
ϕ1

∫ V

0
xDV (V − x)dL(x).
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The value Q is the probability of losing a unit of customer capacity. The

next inequality follows from theorem 2:

Q = 1− 1
ϕ1

∫ V

0
xDV (V − x)dL(x) ≤ 1− 1

ϕ1

∫ V

0
xD(V − x)dL(x) = Q∗.

If only very rare losses are permitted in the system under consideration,

the di�erence between the values Q and Q∗ is inessential.

For example, in the case of the distribution function (19) we obtain:

P ∗ =

{
1− 1− ρ

b

[
a1

1− e−(1−b1)fV

b+ ρ2
+ a2

1− e−(1−b2)fV

b− ρ2

]}
e−fV ,

where a1 =
(ρ2 + b)2

2− ρ2 − b
, a2 =

(ρ2 − b)2

2− ρ2 + b
, b1 = −1 + ρ2 + b

2
, b2 = −1 + ρ2 − b

2
;

Q∗ =

{
1 + fV − 2(1− ρ)

b

[
(a1 + a2)fV

8ρ1
+

+a1
1− e−(1−b1)fV

(b+ ρ2)2
− a2

1− e−(1−b2)fV

(b− ρ2)2

]}
e−fV .

Note that in the most cases the calculation and estimation of the probability

Q is very complicated. Therefore, we often must restrict ourselves to the

calculation and estimation of the loss probability P .

If it is impossible to determine the form of the distribution function D(x),
we can estimate the value P ∗ by approximation of the function

Φ(x) =
∫ x

0
D(x− u)dL(u)

being the distribution function of the sum of independent random variables

σ and ζ, with the distribution function of the gamma distribution

Φ∗(x) = γ(h, rx)/Γ(h), where γ(h, rx) =
∫ hx

0
th−1e−tdt is the incomplete

gamma function, Γ(h) = γ(h,∞) is the gamma function. The parameters

h and r of the approximate distribution should be chosen so that its �rst

and second moments f∗1 = h/r and f∗2 = h(h + 1)/r2 should be equal to the

�rst and second moments of the distribution function Φ(x), respectively. It is
obvious that these moments have the form

f1 = δ1 + ϕ1, f2 = δ2 + ϕ2 + 2δ1ϕ1. (21)
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Thus, the parameters of the distribution function Φ∗(x) should be chosen

as follows:

h =
f2
1

f2 − f2
1

, r =
f1

f2 − f2
1

,

where f1 and f2 can be calculated from relations (17), (21). Hence, we have

the approximate formula

P ∗ ∼= 1− Φ∗(V ).

Note that in the case of not very small permissible loss probabilities, using

the estimation P ∗ instead of P leads to unjusti�ably surplus choice of the

capacity volume V . Therefore, the direct analysis of processor sharing systems

with limited memory space is very important.

4. The case of limited total capacity

The systemM/G/1(V )−EPS with customers of di�erent types was analyzed

in detail in [9, 10]. We shall concider a special case of customers of the same

type. Then, for stationary probabilities of number of customers present in the

system we have:

p0 =

( ∞∑
k=0

akA
(k)
∗ (V )

)−1

, pk = p0a
kA

(k)
∗ (V ), k = 1, 2, . . . ,

where A
(k)
∗ (x) is a kth order Stieltjes convolution of the function

A(x) =
∫ x

u=0

∫ ∞

t=0
udF (u, t).

The loss probability has the form:

P = 1− p0

[
L(V )−

∞∑
k=1

akA
(k)
∗ (V )

]
.

Assume additionally that customer capacity has an exponential distribution

with parameter f , and let the customer length be proportional to his capacity

(ξ = cζ, c > 0). Then, after some calculations we obtain

p0 =


1− ρ

1−√ρe−fV
[
sinh(

√
ρfV ) +

√
ρ cosh(

√
ρfV )

] , if ρ �= 1,

1 + e−2fV

1 + fV
, if ρ = 1;
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pk = p0ρ
k

[
1− e−fV

2k−1∑
i=0

(fV )i

i!

]
, k = 1, 2, . . . ;

P = p0e
−fV cosh(

√
ρfV ),

where ρ = ac/f .

Table 1: Probabilities P and Q for ρ = 0.6

V P ∗ Q∗ P Q

0.0 1.00000 1.00000 1.00000 1.00000

0.2 0.92721 0.99569 0.81994 0.98269

0.4 0.86622 0.98366 0.67754 0.94034

0.6 0.81392 0.96529 0.56700 0.88482

0.8 0.76815 0.94194 0.48156 0.82409

1.0 0.72735 0.91487 0.41516 0.76311

2.0 0.56855 0.75562 0.23586 0.51290

3.0 0.45178 0.60242 0.15775 0.35596

4.0 0.35651 0.47628 0.11281 0.25640

5.0 0.28750 0.37679 0.08340 0.18993

6.0 0.22947 0.29888 0.06291 0.14330

7.0 0.18316 0.23763 0.04811 0.10963

8.0 0.14620 0.18925 0.03716 0.08464

10.0 0.09314 0.12034 0.02263 0.05165

15.0 0.03018 0.03896 0.00697 0.01589

20.0 0.00978 0.01262 0.00222 0.00512

30.0 0.00103 0.00133 0.00023 0.00054

40.0 0.00011 0.00014 0.00002 0.01589

50.0 0.00001 0.00002 0.00000 0.00001

Now we can compare the values P ∗ and P or Q∗ and Q using analytical

results and simulation. Table 1 presents the dependence of loss characteristics

upon the memory capacity V . Here we assume that ρ = 0.6, the customer

length is proportional to his capacity (ξ = cζ), where c = 1, and capacity ζ
has an exponential distribution with parameter f = 1.

The values P ∗, Q∗, P were obtained by calculation from the above relations,

whereas the value Q was estimated by simulation. The table shows that

estimators P ∗, Q∗ are not very precise, and we can use them for the case

when the proper loss characteristics are near zero.
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Abstract. In the paper we are concerned with an optimal cost reachability problem

for weighted timed automata, and we use a translation to SAT to solve the problem.

In particular, we show how to �nd a run of length k ∈ IN that starts at the initial

state and terminates at a state containing a target location, its total cost belongs to

the interval [c, c+1), for some natural number c ∈ IN, and the cost of each other run

of length k, which also leads from the initial state to a state containing the target

location, is greater or equal to c. This kind of runs is called k-quasi-optimal. We

exemplify the use of our solution to the mentioned problem by means of the air tra�c

control problem, and we provide some preliminary experimental results.

1. Introduction

In automatic veri�cation of hardware and software systems, the reachability

problem is a core decision problem. This is because it can be used to detect

deadlocks, or a violation of a safety property, which means that nothing bad

will ever happen. For real-time systems like, for example, an air tra�c control,

or process controllers in manufacturing plants, it is also reasonable to ask

questions about the minimum cost of reaching a desirable state of the system.

Therefore, in the paper, we deal with the k-optimal cost reachability problem

for weighted timed automata [3], in particular, we are interested in using SAT-

methods to solve the problem.

A timed automaton [2] is a formalism that can be used to model the be-

haviour of a real-time system. It extends a �nite automaton by adding a �nite
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set of variables that are able to measure real-time, and express timing con-

straints; these variables are called clocks. The semantics of a timed automaton

is given in terms of an in�nite labelled transition system with two kinds of

transitions: a discrete transition and a time transition. The �rst one corre-

spond to a change of a location, and the second one to the passage of time.

However, in order to de�ne the k-optimal cost reachability problem for timed

automata we need to associate costs with transitions and locations. The costs

assigned to transitions (switch costs) will give the cost of discrete transitions,

and the costs assigned to locations (duration costs) will de�ne the cost of

time spent in these locations. Such timed automata augmented with costs are

known as weighted timed automata [3], or priced timed automata [5].

Our solution to the k-optimal cost reachability problem relies on combining

the well-know forward reachability analysis and the bounded model checking

(BMC) method [6, 13, 14]. The forward reachability algorithm searches the

state space using the breadth �rst mode, whereas the BMC performs a veri�-

cation on a part of the automata model exploiting SAT solvers.

The rest of the paper is organised as follows. In the next section we pro-

vide the main formalisms used throughout the paper, i.e. weighted timed

automata. In Section 3 we de�ne and solve the k-optimal cost reachability

problem for weighted timed automata. In Section 4 we show how our solu-

tion to the considered reachability problem works by means of the air tra�c

control problem. We conclude in Section 5 by discussing related work.

2. Weighted Timed Automata

Let us start by �xing names of the sets of numbers used in the rest of the

paper. By IN = {0, 1, 2, 3, . . . } we denote the set of natural numbers, by Q
the set of non-negative rational numbers, and by PV a set of propositional

variables.

To de�ne weighted timed automata formally, we need to say what type of

clock constraints are allowed as guards and invariants, and what are the cost

functions. This is introduced in the following subsection.

2.1. Clocks and clock valuation

For a �nite set X of real variables, called clocks, the set C(X ) of all the clock
constraints over X is de�ned by the following grammar:

cc ::= true | x ∼ c | x− y ∼ c | cc ∧ cc,

where x, y ∈ X , c ∈ IN, and ∼ ∈ {≤, <,=, >,≥}.
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A clock valuation is a total mapping c : X → Q. Satis�ability of a clock

constraint cc ∈ C(X ) by a clock valuation c (c |= cc) is de�ned inductively as

follows:

• c |= true,

• c |= (x ∼ c) i� c(x) |= c,

• c |= (x− y ∼ c) i� c(x)− c(y) ∼ c,

• c |= cc1 ∧ cc2 i� c |= cc1 and c |= cc2.

In what follows, the set of all the clock valuations satisfying a clock constraint

cc is denoted by [[cc]]. Given a clock valuation c and δ ∈ Q, by c+δ we denote
a clock valuation c′ such that c′(x) = c(x) + δ, for all x ∈ X . Moreover, for

a subset of clocks X ⊆ X , c[X := 0] denotes the valuation c′ such that for

all x ∈ X, c′(x) = 0 and for all x ∈ X \X, c′(x) = c(x). Finally, by c0 we

denote the initial clock valuation, i.e. the valuation such that c0(x) = 0 for

all x ∈ X .

2.2. Syntax and semantics

We assume the de�nition of weighted timed automata from [3] but augmented

to include a special rational variable z.

De�nition 1. (Weighted timed automaton). A weighted timed automa-

ton is a tuple A = (Σ, L, l0,X , E,I, Js, Jd, z,V), where Σ is a �nite set of

labels (actions), L is a �nite set of locations, l0 is an initial location, X is

a �nite set of clocks, E ⊆ L × Σ × C(X ) × 2X × L is a transition relation,

I : L → C(X ) is an invariant function, Js : E → IN is a switch cost func-

tion, Jd : L → IN is a duration cost function, z is a rational variable, and

V : L→ 2PV is a valuation function assigning to each location a set of atomic

propositions true in that location.

The switch cost function assigns to each transition a cost expressing the

price of taking the transition. The duration cost function assigns to each

location a cost expressing the price of staying in this location for one time

unit. The invariant function assigns to each location a clock constraint ex-

pressing the condition under which A can stay in this location. Each element

t = (l, σ, cc,X, l′) ∈ E represents a transition from the location l to the lo-

cation l′, where σ is the label of the transition t, cc de�nes the enabling

conditions for t, and X is a set of clocks to be reset.

The semantics of the weighted timed automaton is de�ned by associating

to it a dense model as de�ned below.
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De�nition 2. Let A = (Σ, L, l0,X , E,I, Js, Jd, z,V) be a weighted timed au-

tomaton, z : {z} → Q a valuation for z, and z0 denote the initial valuation for

z, i.e., z0(z) = 0. A dense model for A is a tupleM(A) = (Σ∪Q, S, s0,→,V ′),
where Σ∪Q is a set of labels, S = {(l, c, z) | l ∈ L, c ∈ Q|X |, c |= I(l), z ∈ Q}
is a set of states, s0 = (l0, c0, z0) is the initial state, V ′ : S → 2PV is a val-

uation function such that V ′((l, c, z)) = V(l), and →⊆ S × Σ ∪ Q × S is the

smallest transition relation de�ned by the following rules:

• for σ ∈ Σ, (l, c, z) σ→ (l′, c′, z′) i� there exists a transition t = (l, σ,
cc,X, l′) ∈ E such that c |= cc, c |= I(l), c[X := 0] |= I(l′), and

z′ = z + Js(t) (action transition),

• for δ ∈ Q, (l, c, z) δ→ (l, c+ δ, z′) i� c, c+ δ |= I(l), and z′ = z+Jd(l) · δ
(time transition).

Intuitively, an action transition corresponds to an action performed by the

automaton under consideration. The action can be performed only if the

underlying enabling condition is satis�ed. Moreover, all the clocks that are

associated with the action are set to zero, its locations change accordingly, and

the value of the variable z is increased by the switch cost. A time transition

causes an equal increase in the value of all the clocks, and does not involve

a location change. Obviously, the new clock valuations have to still satisfy

all the location invariants, and the value of the variable z is increased by the

duration cost.

Let (l, c, z)
δ,σ→ (l′, c′, z′) denote that (l, c, z) δ→ (l′′, c′′, z′′) and (l′′, c′′, z′′) σ→

(l′, c′, z′), where σ ∈ Σ and δ ∈ Q . A run ρ of a weighted timed automaton

A is a �nite sequence of states:

(l0, c0, z0)
δ1,σ1→ (l1, c1, z1)

δ2,σ2→ . . .
δk−1,σk−1→ (lk−1, ck−1, zk−1)

δk,σk→ (lk, ck, zk)

such that (li, ci, zi) ∈ S, σi ∈ Σ, and δi ∈ Q for each i ∈ {1, . . . , k}. Hereafter,
we refer to a run ρ of length k as k-run.

Given a k-run ρ of A and cost functions Js and Jd, we associate cost to ρ
as follows:

• Js(ρ) =
∑k−1

i=0 Js(ti), where ti := (li, ci, zi)
δi+1,σi+1→ (li+1, ci+1, zi+1) ,

• Jd(ρ) =
∑k

i=1 δi · Jd(li).

The total cost associated to a k-run ρ is de�ned as J(ρ) = Jd(ρ) + Js(ρ).
The k-optimal cost for k-runs that start at a state containing location l and

end at a state containing location l′ is de�ned as J∗
k (l, l

′) = inf {J(ρ)|ρ is a k-
run from a state containing location l to a state containing location l′}.
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A k-run ρ from a state containing location l to a state containing location

l′ such that 8J(ρ)9 = 8J∗
k (l, l

′)9 is called k-quasi-optimal.

In this paper, for given two locations l and l′ we are interested in �nding

the greatest integer lower bound (g.i.l.b. for short) of the k-optimal cost for

k-runs starting at a state s containing location l and terminating at a state

t containing location l′, where k is the length of a shortest run from s to t.
Moreover, we are interested in �nding k-quasi-optimal runs. Therefore, in

Section 3 we de�ne k-optimal cost reachability problem, and we show how to

solve it using SAT-methods.

2.3. Discrete semantics

In real-time systems modeled by (weighted) timed automata, in order to use

SAT-techniques to test reachability or other properties, it is customary to

discretise the set of all the clocks valuations. Here we take the discretisation

scheme that is based on the one introduced in [15], but here we use the dis-

cretisation step that depends not only on the length of considered runs, but

also on the maximal duration cost. It uses the following set of discretised

clock's values and labels as primitives. Let cmax be the largest constant c
appearing in all the invariants and guards of a weighted timed automaton A.
For every m ∈ IN we de�ne Am = {a ∈ Q | (∃j ∈ IN) a · 2m = j} and

Bm = {b ∈ Q | (∃j ∈ IN) b · 2m = j and b < cmax +1}. Then, A =
⋃∞

m=0Am

de�nes the set of discretised clock's values, and B =
⋃∞

m=1Bm de�nes the set

of labels. We use this technique to de�ne a discretised model for a weighted

timed automaton. This model is crucial for the translation of the k-optimal

cost reachability problem to the SAT-problem as described in the next section.

To give a de�nition of a discretised model that supports clock constraints

of the form x−y ∼ c, we �rst recall the notion of weak region equivalence [15].

De�nition 3. (Weak region equivalence). Assume a set of clocks X , and

for any t ∈ Q let 〈t〉 denote the fractional (respectively integral) part of t
(respectively 8t9). The weak region equivalence is a relation ∼=⊆ QX × QX

de�ned as follows. For two clock valuations u and v in QX , u ∼= v i� all the

following conditions hold:

[1] 8u(x)9 = 8v(x)9, for all x ∈ X .

[2] 〈u(x)〉 = 0 i� 〈v(x)〉 = 0, for all x ∈ X .

[3] 〈u(x)〉 < 〈u(y)〉 i� 〈v(x)〉 < 〈v(y)〉, for all x, y ∈ X .

De�nition 4. (Discretised model). Let A = (Σ, L, l0,X , E,I, Js, Jd, z,V)
be a weighted timed automaton. A discretised model for A is a tuple
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Md(A) = (Σ ∪ B,Sd, s
0
d,→d,Vd), where Sd = L × AX × B is a set of states,

s0d = (l0, c0, z0) is the initial state, Vd : Sd → 2PV is a valuation function

de�ned by Vd((l, c, z)) = V(l), and →d⊆ Sd × (Σ ∪ B) × Sd is a time/action

transition relation de�ned by:

• Time transition: for any δ ∈ B, (l, c, z) δ→d (l, c + δ, z′) i� (l, c, z) δ→
(l, c + δ, z′) in M(A) and (∀δ′ ≤ δ) c + δ′ ∼= c or c+ δ′ ∼= c + δ,

• Action transition: for any σ ∈ Σ, (l, c, z) σ→d (l′, c′, z′) i� (l, c, z) σ→
(l′, c′, z′) in M(A).

The theorem below shows that the k-optimal cost reachability problem

for a weighted timed automaton A can be solved using the discretised model

Md(A) instead of the dense model M(A).
In what follows, we denote by ρ(s, t) a run that starts at state s and ends at

state t. Moreover, for two states s = (l, c, z) and t = (l′, c′, z′), we write s ∼= t
if and only if l = l′, c ∼= c′, 8z(z)9 = 8z′(z)9 and 〈z(z)〉 = 0⇐⇒ 〈z′(z)〉 = 0.

Theorem 1. Let A be a weighted timed automaton, s and t two states in

M(A), and ρ(s, t) a k-quasi-optimal run in M(A), where k ∈ IN is the length

of a shortest run that starts at s and ends at t. Then, there exist two states

s′ and t′ in Md(A) and there exists a k-quasi-optimal run ρ′(s′, t′) in Md(A)
such that s ∼= s′ and t ∼= t′.

Proof (Idea). The proof is an extension of the proof of Theorem 3.1 in

[15], and it is conducted by means of induction on k. The induction step

consists in showing that for each q = (l, cq, zq), r = (l′, cr, zr) ∈ M(A),
q′ = (l, cq′ , zq′), r′ = (l′, cr′ , zr′) ∈ Md(A), δ ∈ Q, δ′ ∈ B, if q ∼= q′,

δ ∼= δ′ and there exist transitions q
δ,σ→ r, q′ δ′,σ→ r′, then r ∼= r′. The cru-

cial part of the induction step is rather tedious, and relies on showing that

zq + Jd(l) · δ ∼= zq′ + Jd(l) · δ′, what requires using some techniqal facts con-

cerning the underling discretisation.

3. k-optimal cost reachability problem

In this section we formally de�ne the k-optimal cost reachability problem for

weighted timed automata, and we present a solution to the problem which

uses SAT-solvers. We start by de�ning the problem, then we describe our

solution informally, and �naly we show our algorithm.

The k-optimal cost reachability problem for weighted timed automata is

de�ned as follows.
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De�nition 5. (k-optimal cost reachability). Given a weighted timed

automaton A = (Σ, L, l0,X , E,I, Js, Jd, z,V), and a desirable location lp ∈ L
satisfying a property p. k-optimal cost reachability consists in �nding a k-
quasi-optimal run ρ starting at s0d ∈ Md(A) and terminating at a state in

Md(A) containing location lp.

Note that if ρ is a k-quasi-optimal run, then there exists c ∈ IN such that:

c ≤ J(ρ) < c + 1, and for all the k−runs ρ′ that starts at s0d and terminates

at a state in Md(A) containing location lp, J(ρ′) ≥ c holds.

3.1. Our solution � an informal explanation

We begin with an informal explanation of our solution to the k-optimal cost

reachability problem, which will help to understand the formal description

presented later on in this section.

To solve the k-optimal cost reachability problem we proceed as follows. We

�rst encode by propositional formulae both the property p, and the unfolding

of the transition relation of Md(A) up to the depth k (for k ∈ IN). Let ϕk be

the conjunction of the two above formulae. We test ϕk for the propositional

satis�ability using a SAT-solver. If the test for ϕk is positive, we calculate

the cost r0 ∈ Q of the resulting witness ρ0, and we know that J(ρ0) < Ar0B.
Next, we set c0 = Ar0B − 1, and we run the propositional satis�ability test

once again, but for the formula φk(c0) = ϕk ∧ (z < c0)1. If the test for φk(c0)
is positive, we calculate the cost r1 ∈ Q of the resulting witness ρ1, and we

know that r1 < c0. Next, we set c1 = Ar1B − 1, and we run the propositional

satis�ability test once again, but for the formula φk(c1) = ϕk ∧ (z < c1), and
so on. We stop testing if the test for φk(ci) is negative or ri = 0.

Notice, that if the test for φk(ci) is negative, we can perform one more test

for the formula ψk(ci) = ϕk ∧ (z = ci). If the test for ψk(ci) is positive, we can
conclude that k-optimal cost is equal to ci. Otherwise, we can only conclude

that the g.i.l.b. of the k-optimal cost is equal to ci.

3.2. Translation to propositional formulae

Let A = (Σ, L, l0,X , E,I, Js, Jd, z,V) be a weighted timed automaton,

Md(A) = (Σ∪B,Sd, s
0
d,→d,Vd) a discretised model, and k ∈ IN. Each state s

of Md(A) reachable on a k-run can be encoded by a bit-vector whose length,

say n, depends on the number of locations, the constant cmax, the maximal

duration cost, and the number k. Thus, each state s of Md(A) can be rep-

resented by a vector w = (w[1], . . . , w[n]) of propositional variables (usually

1The notation z < ci, for i = 0, 1, 2, . . . appearing in this section, denotes a propositional

formula encoding the fact that the value of the variable z is less than ci.
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called state variables) to which we refer to as a global state variable 2. A �nite

sequence (w0, . . . , wk) of global state variables is called a symbolic k-path.

For two global state variables w, w′, we de�ne the following propositional

formulae:

◦ Is(w) is a formula over w that is true for a valuation sw of w i� sw = s.

◦ p(w) is a formula over w that is true for a valuation sw of w i� p ∈ V(sw)
(encodes a set of states of Md(A) in which p ∈ PV holds).

◦ T (w, w′) is a formula over w and w′ that is true for two valuations sw
of w and sw′ of w′ i� (sw, sw′) ∈→d (encodes the transition relation of

Md(A)).

The de�nition of the formula T involves the Boolean encoding of addition

and multiplication of rational numbers, which has been described in [16].

We can now de�ne the propositional formula ϕk, introduced in Subsec-

tion 3.1. As it was mentioned in Subsection 3.1, ϕk is a conjunction of two

formulae. The �rst one, denoted by p(w), is a translation of a propositional

variable p that represents a location in question. The second one, denoted by

[M s0d
d ]k, encodes the unfolding of the transition relation of Md(A) up to depth

k ∈ IN.

The formula [M s0d
d ]k is de�ned over global state variables wi, for 0 ≤ i ≤ k,

and it constrains the symbolic k-path to be valid k-run of Md(A). Namely,

[M s0d
d ]k := Is0d

(w0) ∧ ∀k−1
i=0 T (wi, wi+1)

3.3. Our solution � a formal algorithm

Now we give an algorithm that formalises the method for �nding the greatest

integer lower bound of k-optimal cost informally described above.

In Algorithm 1 we use the procedure checkSAT (γ) that for any given

propositional formula γ returns a pair (X,W ), whereW denotes the valuation

returned by a SAT solver, and X can be one of the following three values:

TRUE, FALSE, and UNKNOWN . The meanings of the values TRUE
and FALSE are self-evident. The value UNKNOWN is returned either if

the procedure checkSAT is not able to decide satis�ability of its argument

2Notice that we distinguish between states s encoded as sequences of 0's and 1's and

their representations in terms of propositional variables w[i].
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within some preset timeout period, or has to terminate itself due to exhaustion

of available memory. We also use the procedure getCOST (W ) that for the
valuation W , which represents a k−run ρ, returns a natural number c such
that the cost of ρ is less than c. Further, for a given propositional formula

ϕk, we denote by φk(c) the formula ϕk ∧ (z < c), and by ψk(c) the formula

ϕk ∧ (z = c).

Algorithm 1 An algorithm for �nding g.i.l.b. of k-optimal cost

1: k ← 0
2: repeat

3: (result,W )← checkSAT (ϕk)
4: if result = FALSE then

5: k ← k + 1
6: else if result = UNKNOWN then

7: return UNKNOWN
8: end if

9: until result = TRUE
{there exists a witness of the length k for a desirable property}

10: c← getCOST (W )
11: repeat

12: if c = 0 then
13: return k-optimal cost is equal to 0
14: end if

15: (result,W )← checkSAT (φk(c− 1))
16: if result = TRUE then

17: c← getCOST (W )
18: else if result = UNKNOWN then

19: return UNKNOWN
20: end if

21: untill result = FALSE
{optimal cost of any k-run is greater or equal to c}

22: (result,W )← checkSAT (ψk(c))
23: if result = TRUE then

24: return k-optimal cost is equal to c
25: else

26: return g.i.l.b. of k-optimal cost is equal to c
27: end if
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4. Case study

4.1. An air tra�c control problem

Weighted timed automata with the rational variable are suitable formalism for

modelling several optimisation problems, for example, scheduling problems or

air tra�c control problems. In this section we take a closer look at the later

problem.

Assume a situation in which two aircrafts send a landing request to an

airport, and they are approaching the same runway. The goal is to allow both

the aircrafts to land safely and at minimum cost. Safety requires that only one

aircraft at a time must be acknowledged for landing, thus there are two possible

choices: aircraft 1 waits for the landing of aircraft 2 to be completed, or vice

versa. This waiting can be implemented either by slowing down an aircraft

(this concerns a situation, in which the aircrafts share the same trajectory, and

the aircraft that is following is faster), or by forcing one of them to change its

trajectory (this concerns a situation, in which the aircrafts reach the joining

point of their trajectories almost at the same time).

Consider the automaton in Figure 1 [3]. It models the above scenario, i.e.

the discrete values c1 and c2 are the costs of the choice of forcing, respectively,
aircraft 1 and aircraft 2 to wait. These costs label the transitions, respectively,

from location Start to location W1, and from location Start to location W2.

The cost wi, attached to location Wi, is related to the time spent on waiting

by aircraft i. For the aircraft that has to wait for the clearance, we model

two possible manoeuvres. A �rst one is to reduce the speed, and in this case

the aircraft stays in location Wi. Another possibility is to change the original

trajectory, which is modelled by the loop trough location W ′
i . Doing this

manoeuvre requires a �xed cost c′i, takes at least one time unit, and allows

to pay w′
i instead of wi per each time unit. Since it is realistic to reduce the

time a runway stays unused, we penalise this event by a cost c0 per time unit.

Finally, we assume that the landing of each aircraft takes at least one time

unit since the related acknowledgement was issued by the control tower.

4.2. Experimental results

All of the experiments have been performed on a computer equipped with the

processor Intel Core 2 Duo (2 GHz), 2 GB main memory and the operating

system Linux.

In Tables 1 and 2 we present experimental results for the air tra�c control

problem modeled by the automaton on Figure 1 with the following costs:

c0 = 20, w2 = 20, w′
2 = 40, w1 = 60, w′

1 = 40, c1 = 20, c′1 = 20, c2 = 20,
c′2 = 20; we refer to this automaton as Automaton 1.
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W ′
1 L1 Target

W1 L2

Start W2 W ′
2

1 < x1 < 2

1 < x2 < 2
x2 > 1

x1 > 1

x1 < 1, x2 < 1

c2, x1 := 0

c1
x2 := 0
x1 < 1
x2 < 1

x1 > 1
c′1
x1 := 0

x2 > 1

c′2, x2 := 0c0 x1 < 2

w2 w′
2

c0 + w2

c0 + w1
w′

1

x2 < 2

w1

Figure 1: A weighted timed automaton for an air tra�c control problem.

Table 1 shows how we get a shortest run of Automaton 1 that leads from

the initial state s0d = (Start,< 0, 0 >, 0) to a state containing the location

Target. The cost of the 6-run is equal to 64 12
512 , i.e., is less or equal than 65.

Table 2 shows how we get the 6-quasi-optimal run of Automaton 1 such that

the g.i.l.b. of 6-optimal cost is equal to 40. Table 3 shows the 6-quasi-optimal

run of Automaton 1 that leads from the initial state to a state containing the

location Target with the g.i.l.b. of 6-optimal cost equal to 40.

BMC4WTA RSat

k variables clauses sec MB sec MB satis�able

0 133 190 0.00 1.9 0.0 1.3 NO

2 2278 6881 0.12 2.4 0.0 1.8 NO

4 4901 15057 0.12 3.1 0.0 2.4 NO

6 7275 22480 0.19 3.7 0.0 2.9 YES

Table 1: The shortest run of Automaton 1 on which the Target location is

reachable. Its total cost is 64 12
512 .

5. Conclusions and related work

In this paper we have de�ned the k-optimal cost reachability problem for

weighted timed automata, and presented a SAT-based method consisting in

reducing this problem to the SAT-problem. In particular, we have shown how

to �nd a k-quasi-optimal run that starts at the initial state and terminates at

a desirable target state, and how to calculate g.i.l.b. of k-optimal cost for it.

Experimental results, which we have performed, show that the proposed

algorithm can be very useful in �nding g.i.l.b. of k-optimal cost. Obviously,
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our method allows for �nding only lower and upper bounds on the cost, to

which the k-quasi-optimal run belongs (an unit interval [c, c+ 1), for c ∈ IN),
but in many real-time settings such a cost optimal approximation is su�cient.

BMC4WTA RSat

z < c cost variables clauses sec MB sec MB satis�able

z < 64 59132
512 8194 25412 0.22 3.8 0.0 3.2 YES

z < 59 48444
512 8304 25784 0.21 3.9 0.1 3.2 YES

z < 48 46508
512 8238 25558 0.22 3.9 0.0 3.2 YES

z < 46 43504
512 8297 25756 0.22 3.9 0.0 3.2 YES

z < 43 42 36
512 8318 25826 0.25 3.9 0.0 3.2 YES

z < 42 41368
512 8311 25798 0.22 3.9 0.0 3.2 YES

z < 41 40480
512 8339 25889 0.22 3.9 0.0 3.2 YES

z < 40 - 8267 25652 0.22 3.9 0.0 3.2 NO

z = 40 - 7552 23311 0.20 3.7 0.0 3.0 NO

Table 2: Searching for 6-quasi-optimal run of Automaton 1 that leads from the

initial state to a state containing the location Target. The g.i.l.b. of 6-optimal

cost is equal to 40.

k: location value of z delay values of x1, x2

0: Start < 0 + 0
512 > < 0 + 0

512 > < 0 + 0
512 , 0 +

0
512 >

1: Start < 0 + 20
512 > < 0 + 1

512 > < 0 + 1
512 , 0 +

1
512 >

2: W2 < 20 + 20
512 > < 0 + 0

512 > < 0 + 0
512 , 0 +

1
512 >

3: W2 < 40 + 480
512 > < 1 + 23

512 > < 1 + 23
512 , 1 +

24
512 >

4: L2 < 40 + 480
512 > < 0 + 0

512 > < 1 + 23
512 , 1 +

24
512 >

5: L2 < 40 + 480
512 > < 0 + 0

512 > < 1 + 23
512 , 1 +

24
512 >

6: Target < 40 + 480
512 > < 0 + 0

512 > < 1 + 23
512 , 1 +

27
512 >

Table 3: A 6-quasi-optimal run of Automaton 1 leading to a state containing

the location Target.

The optimal reachability problem was considered by many researchers and

several approaches treating the problem in the context of timed or hybrid

automata have been described in the literature, but none of them used SAT-

methods. In particular, in [9] the problem of computing lower and upper

bounds on time delays in timed automata was addressed. In [1] a duration-

bounded reachability problem for timed automata augmented to include the

duration cost function is considered. This problem asks if there is a run of

the timed automaton from the initial state to the given �nal state such that

the duration of the run satis�es an arithmetic constraint (an optimal cost).
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The duration-bounded reachability problem has been also analysed in [10].

This is because the problem can be reduced to checking whether a duration

formula, which de�nes an optimal cost, is satis�ed by a integer computation

of an integration graph (a kind of a timed automaton). The solution is based

on constructing a set of equations that characterises the length of time a com-

putation spends in each automaton location.

The work [4] also tackles the optimal (minimum-time) reachability problem

for timed automata. In particular, here, the problem is formulated in terms

of a timed game automaton (TGA), and solved by constructing an optimal

strategy using a backward �xed-point calculation on the state-space of the

TGA. Minimum-time reachability problem for timed automata is also solved

in [12]. However here, the solution is based on the forward �xed-point algo-

rithm that generates on-the-�y a forward reachability graph for a given timed

automaton.

The paper [5] introduces priced timed automata as an extension of timed

automata with prices on both transitions and locations, and shows how to

solve the minimum cost reachability problem; this sort of automata we have

used in the paper. In [3] such reachability problem is called as the single-

source optimal reachability problem, and it is solved by a reduction of the

problem to a parametric shortest-path problem. The methods presented in

both papers [5] and [3] are based on clock region graphs; in [3] the authors

refer to priced timed automata as weighted timed automata.

Further, the paper [7] addresses the optimal reachability problem for

weighted timed automata with cost functions allowing for both positive and

negative costs on edges and locations, and apply the proposed method to

timed games. In [11] the decidability of the optimal (minimum and maximum

cost) reachability problems for multi-priced timed automata (an extension of

timed automata with multiple cost variables evolving according to given rates

for each location) is proved, and in [8] cost-optimal in�nite schedules in terms

of minimal (or maximal) cost per time ratio in the limit is considered.
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Abstract. In this paper we present algorithms for a Boolean encoding of four basic

arithmetic operations on integer numbers: addition, subtraction, multiplication and

division. Integer numbers are encoded in two's complement system as vectors of

Boolean formulae, and arithmetic operations are faithfully encoded as operations on

vectors of Boolean formulae.

1. Introduction

Boolean encoding of arithmetic operations is an important issue in some areas

of symbolic model checking, for example, in SAT-based model checking for

timed automata with discrete data (TADD), i.e. timed automata augmented

with integer variables. The �rst attempt to develop bounded model checking

for TADD was undertaken in [9]. However, the set of arithmetic operations

considered in this paper was limited to addition and subtraction of integer

variables.

In Saturn [7], the system for static analysis of programs that was devel-

oped at Stanford University, Boolean encoding of arithmetic operations is also

limited. In an unpublished technical report [1] there are listed many opera-

tions for constructing and manipulating vectors of Boolean formulae, among

others, addition and subtraction. But for multiplication and division there are

mentioned only restricted versions of operations on Boolean formulae: namely,

multiplication and division of a Boolean vector by a constant integer number

and division of a Boolean vector by a constant integer number.
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There are many tools which make use of a Boolean encoding of arithmetic

operations. One of them is C32SAT � a tool for checking C expressions by

means of satis�ability testing [2]. C32SAT parses the input expression and

builds a parse tree, which is transformed into an And-Inverter Graph. After-

wards, the graph is transformed into conjunctive normal form and passed to

a SAT solver.

In this paper we show how to encode faithfully the four basic arithmetic

operations for integer numbers: addition, subtraction, multiplication and di-

vision. Our algorithms for Boolean encoding of the operations in question

are based on standard algorithms well-known in the theory of computer arith-

metic.

In the technical report [8] we have also provided algorithms for a Boolean

encoding of the operation of calculating integer square root and of the opera-

tion of exponentiation with nonnegative integer exponent.

2. Basic notions and notations

De�nition 1. Let V be a nonempty set of propositional variables. The set

F(V) of Boolean formulae over V is de�ned by the following grammar:

f ::= false | true | p | ¬f | f ∨ f | f ∧ f

The propositional variables and the constants false and true are called

atomic Boolean formulae. In order to enhance readability of Boolean encoding

of arithmetic operations we shall use two auxiliary propositional connectives:

⊕ (exclusive disjunction) and ≡ (biconditional), de�ned in the standard way:

f ⊕ g = (f ∧ ¬g) ∨ (¬f ∧ g) f ≡ g = (f ∧ g) ∨ (¬f ∧ ¬g)

We assume that, from greatest to lowest priority, the priority order is as

follows: ¬, ∧, ∨, ⊕, ≡.

De�nition 2. Let B2 = 〈{0, 1}, −, ∪, ∩ , 0, 1〉 be the two element Boolean

algebra. A valuation v is a mapping from the set of atomic Boolean formulae

to the universe of the Boolean algebra B2 satisfying the condition v(false) = 0
and v(true) = 1. The set of all the valuations will be denoted by Val(V).

It is well known that each valuation v can be uniquely extended to a ho-

momorphism hv from the algebra of formulae 〈F(V), ¬, ∨, ∧ false, true〉
to the Boolean algebra B2.

From now on we shall write F and Val instead of F(V) and Val(V) respec-
tively, as we assume that the set V of the propositional variables is �xed.
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De�nition 3. A vector of Boolean values is a �nite, nonempty sequence of

Boolean values 0 and 1.

As the Boolean values 0 and 1 can be identi�ed with binary digits, from now

on, vectors of Boolean values will be called bit vectors. Every bit vector will be

interpreted as an integer encoded in the two's-complement system. Namely,

let a = 〈an−1, . . . , a0〉 be a bit vector of length n. De�ne the interpretation

I(a) in the following standard way:

I(a) =

(
n−1∑
i=0

ai · 2i
)
− (an−1 · 2n) .

De�nition 4. A vector of Boolean formulae (a Boolean vector for short) is

a �nite, nonempty sequence of Boolean formulae. A set of all the Boolean

vectors of length n will be denoted by BVn.

Let x = 〈xn−1, . . . , x0〉 be a Boolean vector and v be a valuation. Then

a sequence Hv(x) = 〈hv(xn−1), . . . , hv(x0)〉 is a bit vector that will be inter-

preted as a number I(Hv(x)). From now on we shall write Iv(x) instead of

I(Hv(x)).
It it well known from computer arithmetic that in two's complement rep-

resentation of a number b the most signi�cant bit is equal to 1 if and only if

the number b is negative. Recall also that for every bit vector a of length n,
the following hold:

−2n−1 ≤ I(a) ≤ 2n−1 − 1. (1)

3. Encoding of arithmetic relations and operations

We start with an obvious observation that the result of an arithmetic operation

may not �t in the two's complement representation of a given length n. This is
clear for addition, subtracting and multiplication. There is also one particular

case for division. Namely, when a dividend is equal to −2n−1−1 and a divisor

is equal to −1, the result, which is equal to 2n−1, does not �t into n bits.

Such a situation is called an over�ow. This motivates the following notion of

faithful encoding.

Let ◦ be a binary arithmetic operation and let � be a binary operation

on Boolean vectors. We say that the operation � encodes the operation ◦
faithfully if and only if for every x, y ∈ BVn and every v ∈ Val,

−2n−1 ≤ Iv(x) ◦ Iv(y) ≤ 2n−1 − 1 =⇒ Iv(x � y) = Iv(x) ◦ Iv(y).
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The de�nition of the faithfully encoding of a unary arithmetic operation is

analogous.

In what follows we assume that there is a global variable overflow initially
set to false in which the Boolean formula expressing a possible over�ow is

computed.

Let ∼ be a two argument arithmetic relation. We say that a two argument

operation ST : BVn ×BVn −→ F faithfully encodes the relation ∼ if and only

if for every x, y ∈ BVn and every v ∈ Val,

hv(x ST y) = 1 ⇐⇒ Iv(x) ∼ Iv(y).

3.1. Encoding of the relation �equal to�

In order to �nd a Boolean formula that faithfully encodes the equality re-

lation assume that v is an arbitrary but �xed valuation, and observe that

Iv(x) = Iv(y) i� hv
(
∀n−1

j=0 (xj ≡ yj)
)

= 1. Thus, Algorithm 1 constructs

a Boolean formula Equal(x, y) that is the conjunction of all the formulae of

the form xj ≡ yj.

Algorithm 1 Equal

Input: Boolean vectors x, y of length n.
Output: A Boolean formula f such that ∀v ∈ Val, Iv(f) = 1 ⇐⇒ Iv(x) =

Iv(y).
1: function Equal(x, y)
2: f← true
3: for j ← 0 to n− 1 do
4: f← f ∧ (x[j] ≡ y[j])
5: end for

6: return f
7: end function

3.2. Addition

To de�ne the addition of two Boolean vectors we adapt the method of

the addition of two bit vectors known from computer arithmetic. Let x, y
be two Boolean vectors of length n, i.e. let x = 〈xn−1, . . . , x0〉 and

y = 〈yn−1, . . . , y0〉, where for every 0 ≤ k < n, xk and yk are Boolean

formulae. De�ne an ordered pair of Boolean vectors 〈w, c〉 ∈ BVn ×BVn+1 as

follows: �rst, let c0 = 0; next, for 0 ≤ k < n, let

〈wk, ck+1〉 = 〈xk ⊕ yk ⊕ ck, (xk ∧ yk) ∨ (xk ∧ ck) ∨ (yk ∧ ck)〉 .
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The vector w represents the sum of x and y, and the vector c represents the

succeeding carry bits. Clearly, the sum of two bit vectors of length n may not

�t into n bits. By (1), this happens if and only if the sum is less than −2n
or greater than 2n − 1. It is known from computer arithmetic that adding

two integers cause an over�ow exactly when the carry bits cn and cn+1 are

di�erent.

Algorithm 2 Add

Input: Boolean vectors x, y of length n.
Output: A Boolean vector w of length n such that ∀ v ∈ V al, if −2n−1 ≤

Iv(x) + Iv(y) ≤ 2n−1 − 1, then Iv(w) = Iv(x) + Iv(y).
1: function Add(x, y)
2: c[0]← false
3: for k ← 0 to n− 1 do
4: w[k]← x[k] ⊕ y[k] ⊕ c[k]
5: c[k + 1]← (x[k] ∧ y[k]) ∨ (x[k] ∧ c[k]) ∨ (y[k] ∧ c[k])
6: end for

7: overflow← overflow ∨ (c[n] ⊕ c[n+ 1])
8: return w
9: end function

3.3. Subtraction

Notice that in order to subtract two integers it is enough to add to the �rst

number the additive inverse of the second number. Therefore, we need an

operation on Boolean vectors that encodes additive inverse.

Recall that computing additive inverse for a two's complement number

involves complementing each bit and then adding 1. It follows that we need

an operation for creating a Boolean vector that represents the number 1. It

is obvious that the number 1 is represented by the Boolean vector of the form

〈false, . . . ,false, true〉, and an algorithm for creating this vector is trivial.

Nevertheless, it will be useful to provide a more general Algorithm 3 that for

a given integer creates a Boolean vector representing that number.

In this algorithm we use the operation >> of arithmetic right shift also

known as signed shift. Recall that in Java the operator >> designates signed

shift, whereas in C++ a meaning of the operator >> is implementation-de�ned.

Note that in gcc compiler, i.e the compiler we use, the operator >> is imple-

mented as signed shift. In order to ensure that an implementation of Algo-

rithm 3 in the language C++ is independent of an used compiler, one should

use a proper implementation of signed shift instead of the operator >>. Now
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Algorithm 3 BoolVec

Input: A number of bits n and an integer a.
Output: A Boolean vector w of length n such that ∀v ∈ Val, if −2n− 1 ≤

a ≤ 2n−1 − 1, then Iv(w) = a.
1: function BoolVec(n, a)

2: if a < 0 then
3: w[n− 1]← true
4: else

5: w[n− 1]← false
6: end if

7: for k ← 0 to n− 2 do
8: if amod 2 = 0 then
9: w[k]← false

10: else

11: w[k]← true
12: end if

13: a← a >> 1
14: end for

15: overflow← overflow ∨ (a �= 0 ∧ a �= −1)
16: return w
17: end function

we are able to write down an algorithm that computes the additive inverse of

a Boolean vector x, also called the opposite of x.

Note that in two's complement arithmetic adding the number 1 to a n-bit
number b generates over�ow if and only if b = 2n−1. As the two's complement

representation of the number 2n − 1 is of the form 〈0, 1, . . . , 1〉, which is the

result of complementing each bit in the vector 〈1, 0, . . . , 0〉 that represents the
number −2n−1, it follows that taking additive inverse of a given number a
generates over�ow exactly when a = −2n−1.

In the algorithm for subtracting we need some auxiliary operations on

Boolean vectors.

For a given Boolean vector x of length n and an integer m ≥ n, the auxiliary
operation Extend implemented in Algorithm 5 creates a Boolean vector w of

length m that represents the same integers as the vector x. This is done by

copying all the elements of x to the corresponding elements of y and then

copying the sign bit of x to the most signi�cant m − n elements of y. The

algorithm described re�ects the known operation of extension that consists

in increasing the number of bits of a binary number while preserving the

number's sign and value. For example, if 8 bits are used to represent the value
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Algorithm 4 Opp

Input: A Boolean vector x of length n.
Output: A Boolean vector w of length n such that ∀v ∈ Val, if −2n−1 <

Iv(x) ≤ 2n−1 − 1, then Iv(w) = −Iv(x).
1: function Opp(x)
2: for k ← 0 to n− 1 do
3: w[k]← ¬x[k]
4: end for

5: w← Add(w,BoolVec(n, 1))
6: return w
7: end function

Algorithm 5 Extend

Input: A Boolean vector x of length n and a positive number m ≥ n.
Output: A Boolean vector w of length m such that ∀v ∈ Val, Iv(w) = Iv(x).
1: function Extend(x, m)

2: for k ← 0 to n− 1 do
3: w[k]← x[k]
4: end for

5: for k ← n to m− 1 do
6: w[k]← x[n− 1]
7: end for

8: return w
9: end function

−15 using two's complement 〈1, 1, 1, 1, 0, 0, 0, 1〉, and sign extend to 16 bits is

used, the new representation would be 〈1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1〉.
For a given Boolean vector x of length m, the auxiliary operation Reduce

implemented in Algorithm 6 creates a Boolean vector w of length n ≤ m such

that every integer represented by the Boolean w is also represented by the

Boolean vector x.

Now we are in a position to write down an algorithm for subtraction of

two Boolean vectors representing integer numbers. At the beginning the

algorithm enlarges both the arguments by one bit in order to avoid a pos-

sible over�ow that may occur in the operation of taking the additive inverse.

Then the algorithm adds the enlarged �rst argument to the additive inverse

of the enlarged second argument and puts the result in an auxiliary Boolean

vector w. Eventually, the over�ow is computed and as the result of subtraction

the algorithm returns the Boolean vector Reduce(w, n).
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Algorithm 6 Reduce

Input: A Boolean vector x of length m and a positive number n ≤ m.

Output: A Boolean vector w of length n such that ∀v ∈ Val, if−2n ≤ Iv(x) ≤
2n − 1, then Iv(w) = Iv(x).

1: function Reduce(x, n)
2: for k ← 0 to n− 2 do
3: w[k]← x[k]
4: end for

5: w[n− 1]← x[n− 1]
6: return w
7: end function

Algorithm 7 Subtract

Input: Boolean vectors x, y of length n.
Output: A Boolean vector w of length n such that ∀v ∈ Val, if −2n−1 ≤

Iv(x)− Iv(y) ≤ 2n−1 − 1, then Iv(w) = Iv(x)− Iv(y).
1: function Subtract(x, y)
2: p← Extend(x, n+ 1); q← Extend(y, n+ 1)
3: w← Add(p, Opp(q))
4: overflow← overflow ∨ ¬(w[n− 1] ≡ w[n])
5: return Reduce(w, n)
6: end function

3.4. Multiplication

In the algorithm for multiplication we need some additional auxiliary opera-

tions on Boolean vectors, namely, ShiftLeft, Conjunction and Abs.

The auxiliary operation ShiftLeft, which is implemented in Algorithm

8, is the operation of shifting a Boolean vector one bit left, and after shifting,

�lling in the least signi�cant position of the vector with the Boolean formula

false. This operation corresponds to the well known operation called a logical
shift. The operation of shifting is also used in the algorithm for dividing

nonnegative integers.

The operation Conjunction implemented in Algorithm 9 creates the bit-

wise conjunction of a Boolean formula and a Boolean vector. This simple

operation enables simulating a conditional execution in the algorithms of mul-

tiplying and dividing. The reason for this is the following obvious property:

(∀v ∈ Val) Iv(Conjunction(f, x) =

{
0, if Iv(f) = 0
Iv(x), if Iv(f) = 1.
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Algorithm 8 ShiftLeft

Input: A Boolean vector x of length n.
Output: A Boolean vector x logically shifted left by one.

1: procedure ShiftLeft(x)
2: for k ← n− 1 down to 1 do
3: x[k]← x[k − 1]
4: end for

5: x[0]← false
6: end procedure

Algorithm 9 Conjunction

Input: A Boolean formula f and a Boolean vector x of length n.
Output: A Boolean vector w of length n such that for every 0 ≤ k < n,

w[k] = f ∧ x[k].
1: function Conjunction(f , x)
2: for k ← 0 to n− 1 do
3: w[k]← f ∧ x[k]
4: end for

5: return w
6: end function

For a given Boolean vector x of length n, the auxiliary operation Abs

implemented in Algorithm 10 creates a Boolean vector w of length n such that

w represents the absolute value of x.
Now we are in a position to write down the algorithm for multiplication of

two Boolean vectors representing nonnegative integers. Algorithm 11 creates

a Boolean vector that represents the result of multiplication of two Boolean

vectors that represent nonnegative integers. We adapted the simplest method

that computes the product one bit at a time, and is a symbolic version of the

paper-and-pencil method.

Note that at the beginning of the algorithm some preparatory steps are

needed. First, both the arguments are copied to auxiliary variables p and q;
next, the most signi�cant bit of each of the auxiliary variables is set to false;
eventually, both the auxiliary variables are enlarged to size 2 · n, and w is set

to 〈false, . . . ,false〉.
After these preparatory steps, the algorithm proceeds as follows: for every

k from 0 to n− 1 the conjunction of the multiplicand and the kth element of

multiplier is added to w. This last step simulates the conditional addition of

the multiplicand to the product: the multiplicand is added in the kth step if

and only if the kth element of multiplier represents the binary value 1.
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Algorithm 10 Abs

Input: A Boolean vector x of length n.
Output: A Boolean vector w of length n such that ∀v ∈ Val, if −2n−1 <

Iv(x) ≤ 2n−1 − 1, then Iv(w) = |Iv(x)|.
1: function Abs(x)
2: y← Opp(x)
3: for k ← 0 to n− 2 do
4: w[k]← (x[n− 1] ∧ y[k]) ∨ (¬x[n− 1] ∧ x[k])
5: end for

6: w[n− 1]← false
7: return w
8: end function

Algorithm 11 MultiplyNonNeg

Input: Boolean vectors x, y of length n
Output: A Boolean vector w of length 2 · n such that ∀v ∈ Val, if Iv(x) ≥ 0

and Iv(y) ≥ 0, then Iv(w) = Iv(x) · Iv(y).
1: function MultiplyNonNeg(x, y)
2: p← x; p[n− 1]← false; p← Extend(p, 2 · n)
3: q← y; q[n− 1]← false; q← Extend(q, 2 · n)
4: w← BoolVec(2 · n, 0)
5: for k ← 0 to n− 2 do
6: w← Add(w, Conjunction(q[k], p)
7: ShiftLeft(p)
8: end for

9: return w
10: end function

The following Algorithm 12 creates a Boolean vector that represents the re-

sult of multiplication of two Boolean vectors that represent signed integers. At

the beginning, the algorithm enlarges both the arguments by one bit. Then,

two cases are considered: the arguments are of the same sign (f0) and the argu-
ments have di�erent signs (f1). In each of the cases the algorithm symbolically

converts the arguments to be nonnegative, does an unsigned multiplication,

and for the case when the original arguments have di�erent signs, negates the

result. Next, from the two symbolic results, named w0 and w1, the �nal result
is created in the following way: for every k such that 0 ≤ k < 2 · (n + 1),
the kth bit of the product is set to f0 ∧ w0[k] ∨ f1 ∧ w1[k]. Eventually, the
over�ow is computed and the result is reduced to n bits.
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Algorithm 12 Multiply

Input: Boolean vectors x, y of length n
Output: A Boolean vector w of length n such that ∀v ∈ Val, if −2n−1 ≤

Iv(x) · Iv(y) ≤ 2n−1 − 1, then Iv(w) = Iv(x) · Iv(y).
1: function Multiply(x, y)
2: p← Extend(x, n+ 1); q← Extend(y, n+ 1)
3: w0 ←MultiplyNonNeg(Abs(p), Abs(q))
4: w1 ← Opp(w0)
5: f0 ← (¬x[n− 1] ∧ ¬y[n− 1]) ∨ (x[n− 1] ∧ y[n− 1])
6: f1 ← (¬x[n− 1] ∧ y[n− 1]) ∨ (x[n − 1] ∧ ¬y[n− 1])
7: m← 2 · (n+ 1)
8: for k ← 0 to m− 1 do
9: w[k]← f0 ∧ w0[k] ∨ f1 ∧ w1[k]

10: end for

11: of ← false
12: for k ← n− 1 to m− 2 do
13: of← of ∨ ¬(w[k] ≡ w[m− 1)
14: end for

15: overflow← overflow ∨ of
16: return Reduce(w, n)
17: end function

3.5. Division

There are many possible algorithms for dividing nonnegative integers. We

adapted the so called restoring radix-2 division algorithm described in

Appendix H of [3]. Algorithm 13 is done by shifts, subtractions, additions

and testing whether the number is negative. The algorithm needs four regis-

ters: one for the dividend x, one for the divisor y, one for the quotient q, and
one for the remainder r. The registers r and q form a double-length register

pair. The register q is initially set to the value of x and the register q is

initially set to 0.

Algorithm 14 creates a Boolean vector that represents the result of division

of two Boolean vectors that represent signed integers. There are the same cases

to consider for arguments as in Algorithm 12. Also the method of computing

the �nal result is nearly the same. There are only two di�erences. The �rst

one is that the result is not reduced to the length of arguments, as in all the

cases considered the results are of length n. The second one is the method of

setting the over�ow.
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Algorithm 13 DivideNonNeg

Input: Boolean vectors x, y of length n
Output: Boolean vectors r, q such that ∀v ∈ Val, if Iv(x) ≥ 0 and Iv(y) > 0,

then Iv(x) = Iv(q) · Iv(y) + Iv(r).
1: function DivideNonNeg(x, y)
2: q← x; r← BoolVec(n, 0)
3: for k ← 0 to n− 1 do
4: ShiftLeft(r)
5: r[0]← q[n− 1]
6: ShiftLeft(q)
7: r← Subtract(r, y)
8: q[0]← ¬r[n− 1]
9: r← Add(r,Conjunction(r[n− 1], y))

10: end for

11: return 〈q, r〉
12: end function

We would also point out that the signs of the quotient and of the remainder

for negative dividends and/or negatives divisors are computed in accordance

with the following rules of C++ and Java: the quotient is negative if and only

if both the dividend and the divisor have di�erent signs, and the remainder is

negative if and only if the dividend is negative.

3.6. Encoding of the relation �less than�

Let us note that the relation �less than� can be encoded by using the operation

of subtraction. The algorithm enlarges both the arguments by one bit in order

to avoid a possible over�ow that may occur in the operation of subtraction and

then returns the most signi�cant element of the Boolean vector representing

the di�erence.

4. Implementation

We have implemented the described algorithms in the programming language

C++ by designing the following classes: the class BoolForm that implements

basic logical operations on Boolean formulae; the class BoolFormVect that im-

plements basic operations on Boolean vectors; and the class Integer, derived

from BoolFormVect, that implements the Boolean encoding of arithmetic re-

lations and operations as described in this paper.
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Algorithm 14 Divide

Input: Boolean vectors x, y of length n
Output: Boolean vectors q, r such that ∀v ∈ Val, if Iv(y) �= 0, then

Iv(x) = Iv(q) · Iv(y) + Iv(r), sgn(Iv(q)) = sgn(Iv(x)) · sgn(Iv(y)), and
sgn(Iv(r)) = sgn(Iv(x)).

1: function Divide(x, y)
2: p← Extend(x, n+ 1); q← Extend(y, n+ 1)
3: 〈q0, r0〉 ← DivideNonNeg(Abs(p), Abs(q))
4: q1 ← Opp(q0); r1 ← Opp(r0)
5: f00 ← ¬x[n− 1] ∧ ¬y[n− 1]); f01 ← ¬x[n− 1] ∧ y[n− 1])
6: f10 ← x[n− 1] ∧ ¬y[n− 1]); f11 ← x[n− 1] ∧ y[n− 1])
7: for k ← 0 to n do
8: q[k]← ((f00 ∨ f11) ∧ q0[k]) ∨ ((f01 ∨ f10) ∧ q1[k])
9: r[k]← ((f00 ∨ f01) ∧ r0[k]) ∨ ((f10 ∨ f11) ∧ r1[k])

10: end for

11: a← BoolVec(n+ 1, 0)
12: b← BoolVec(n+ 1, 1)
13: z← BoolVec(n+ 1, 2n−1)
14: of← Equal(p, Opp(z)) ∧ Equal(q, Opp(b)) ∨ Equal(y, a)
15: overflow← overflow ∨ of
16: return 〈q, r〉
17: end function

In order to test the above algorithms we have created testing programs

for all the arithmetic operations considered. In every program some suitable

formula ϕ is tested in the following way: at �rst, ϕ is converted to a set of

clauses C in a way such that although the set C is not logically equivalent

to the formula ϕ, it preserves satis�ability, i.e. C is satis�able if and only if

ϕ is satis�able; then, we check satis�ability of C by using MiniSat. Some of

experimental results for the programs mentioned above are provided in [8].

5. Final remarks

As a result of implementing our Boolean encoding of arithmetic operations we

were able to extend the module BMC4TADD of the model checker Verics [4] in or-

der to include multiplication and division in the set of the allowed operations.

The module BMC4TADD serves for veri�cation of properties of timed automata

with discrete data. The formalism of timed automata with discrete data

and basic arithmetic operations is now used in veri�cation of Java programs

(see [6, 10]). The Boolean encoding of arithmetic operations was also used in

a new approach to model checking of systems speci�ed in UML (see [5]).
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Abstract. For single-server queueing systems with non-homogeneous customers

having some random space requirements we compare processor-sharing and FIFO

disciplines and investigate their in�uence on the total sum of space requirements

characteristics (when this sum is not limited, i.e. V = ∞) and customers loss prob-

ability (when this sum is limeted, i.e. V < ∞), using analytical modeling and

simulation.

1. Introduction

In the present work we investigate single-server queueing systems with non-

homogeneous customers. This means that

1) each customer is characterized by some non-negative random capacity ζ;

2) customer's length ξ and his capacity ζ are generally dependent.

Note that we shall use the notion �customer length� instead of �service

time�. The di�erence between these notions is essential for processor sharing

systems. The amount of work necessary for customer's service is called the

customer length [5], i.e. the customer service time under condition that there

are no other customers on service during this time period. Analogously, the

residual length of the customer is referrred as his residual service time after

some time instant under the same condition.
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The total sum σ(t) of capacities of all the customers present in the system

at arbitrary time t may be limited by some constant value V (0 < V ≤ ∞)

that is called the capacity of the system.

Such systems are used to model and solve various problems occurring in the

design of computer and communicating nets and systems. It is clear that they

di�er from usual classical queueing systems in the case V <∞. For example,

we can analyze the non-classical systemM/G/1/(∞, V ) with limited capacity

that di�ers from the classical system M/G/1/∞.

Let

F (x, t) = P{ζ < x, ξ < t}

be the distribution function of the random vector (ζ, ξ). Then

L(x) = P{ζ < x} = F (x,∞) and B(t) = P{ξ < t} = F (∞, t)

are the distribution functions of customer's capacity and length, respectively.

The part of system capacity is occupied by a customer at the epoch he arrives

and is released entirely at the epoch he completes service. The process σ(t) is
called the total customers capacity.

Total capacity limitation (in the case V <∞) leads to losses of customers.

A customer arriving at the epoch τ and having capacity x will be admitted to

the system if σ(τ − 0) + x ≤ V . Otherwise (σ(τ − 0) + x > V ), the customer

will be lost.

Various single-server queueing systems with non-homogeneous (in the sense

of assumptions 1, 2) customers were analyzed in [1�4].

The purpose of this paper is to compare processor sharing and FIFO or

other conservative, not depending on customers capacity disciplines and in-

vestigate their in�uence on the stationary �rst moment of the total sum of

customers capacities (when V = ∞) and customers loss probability (when

V <∞). To realize this purpose we use analytical modeling and simulation.

2. The case of unlimited system capacity

Suppose that customers intrance �ow is Poisson. Let a be an arrival rate of

entrance �ow of customers. Assume that V =∞. Then we have the classical

M/G/1/∞ andM/G/1/∞−EPS (processor sharing) systems without losses

of customers. For such a system we can obtain the stationary characteristics

of total customers capacity (see e.g. [2, 3]).

We shall use the following notation. Denote by

α(s, q) =
∫ ∞

0

∫ ∞

0
e−sx−qtdF (x, t)
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the double Laplace-Stieltjes transfom (LST) of the function F (x, t). Let

ϕ(s) = α(s, 0) and β(q) = α(0, q) be the LST of the functions L(x) and

B(t), respectively. Let D(x) = P{σ < x} be the distribution function

of stationary total customers capacity σ. Let ϕi = Eζi, βi = Eξi and

αij = E(ζiξj) be the ith moments of the random variables ζ, ξ and the mixed

(i+ j)th moment of the random variables ζ and ξ, respectively. i, j = 1, 2, . . . ,
ρ = aβ1 < 1. Denote by δ(s) =

∫∞
0 e−sxdD(x) the LST of the func-

tion D(x) and by δi = Eσi the ith moment of total customers capacity σ,
i = 1, 2, . . . .

Then for the system M/G/1/∞ (or for the discipline FIFO) we have [4]:

δFIFO1 = EσFIFO = aα11 +
a2β2ϕ1

2(1− ρ)
. (1)

For the system M/G/1/∞− EPS (or for the discipline EPS) we get [2]:

δEPS1 = EσEPS =
aα11

1− ρ
. (2)

From the simple relations (1) and (2), we obtain that δFIFO1 < δEPS1 if

the inequality 2β1α11 > β2ϕ1 takes place. For example, if the random vari-

ables ζ and ξ are independent, i.e. α11 = ϕ1β1, the last inequality takes

the form 2β2
1 > β2. Note that for exponential distributed customer length

we have 2β2
1 = β2. So, in this case for independent ζ and ξ we obtain that

δFIFO1 = δEPS1 . If the customer length distribution is characterized by vari-

ation which is less than for exponential one, we always have δFIFO1 < δEPS1 .

Evidently, this will be true for the case of positive correlated ζ and ξ (when

α11 > ϕ1β1).

For many real computer systems (for example, for communicating centers)

the customer length can be de�ned by the relation ξ = cζ + ξ1, where c ≥ 0
and the random variables ζ and ξ1 are independent.

Denote by κi the ith moment of the random variable ξ1, i = 1, 2, . . . . Then
the �rst moments of the random variables σFIFO and σEPS can be calculated

from relations (1) and (2), respectively, where [3]

α11 = ϕ1κ1 + cϕ2, β1 = cϕ1 + κ1, β2 = c2ϕ2 + 2cϕ1κ1 + κ2.

In this case we have that δFIFO1 < δEPS1 if the following inequality takes place:

c2ϕ1ϕ2 + 2κ1(ϕ1κ1 + cϕ2) > ϕ1κ2. (3)

In particular, if a customer length is proportional to his capacity, i.e. κ1 ≡ 0,
κ2 ≡ 0, we have from (3) that c2ϕ1ϕ2 > 0. Evidently, this inequality is always



194 Oleg Tikhonenko, Artur Gola, Marcin Zióªkowski

true. For example, if we assume additionally that the customer length ζ has

an exponential distribution with parameter f , we obtain:

δFIFO1 =
1
f
· ρ(2− ρ)

1− ρ
, δEPS1 =

1
f
· 2ρ
1− ρ

.

Intuitively this is clear, because in the case of EPS discipline short (or

having small capacity) customers are for a small time in the system, while

FIFO service organization does not depend on the customer capacity.

3. The case of limited system capacity

In this case, it is interesting to compare loss characteristics for EPS and FIFO

disciplines.

If customer's length does not depend on his capacity and has an exponential

distribution with parameter f , we obtain [6] for systems M/M/1/(∞, V ) and
M/G/1/(∞, V )−EPS with the same ρ = aβ1 that the loss probability P has

the form:

PFIFO = PEPS =


1− ρ

e(1−ρ)fV − ρ
if ρ �= 1,

(1 + fV )−1 if ρ = 1.

Note that β1 = 1/µ for the systemM/M/1/(∞, V ), where µ is the param-

eter of customer length.

Later on, we shall compare loss probabilities P and probabilities Q that

unit of customer's capacity will be lost (see [7]) for cases of FIFO and EPS

disciplines. It is clear (in this case) that probability Q is also the same for both

systems under consideration. This fact can be con�rmed by results of simu-

lation (see Appendix, tables 1 and 2, where f = 1, µ = 1). In our notation,

we shall use the low indexes �an� or �sim� to demonstrate that an apropriate

characteristic was obtained analytically or by simulation, respectively.

It can be conformed analytically and by simulation that we have the same

results for loss characteristics P and Q in the systems M/M/1/(∞, V ) and
M/G/1/(∞, V ) − EPS with the same ρ, when customer's length does not

depend on his capacity and customer's capacity has the same distribution for

both systems.
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But if customer's length depends on his capacity, then service discipline

has an in�uence on loss characteristics of the system. This in�uence depends

on the character of this dependence and the value of ρ, but is inessential

for small ρ. We demonstrate this fact in tables 3, 4, and 5 (in Appendix),

when customer's length is proportional to his capacity and the capacity has

an exponential distribution (ξ = cζ, c = 1, ϕ1 = Eζ = 1).
It is interesting to compare the last results with those for the case of non-

exponential customer volume and length distribution. We present them in

tables 6�9 for independent random variables ζ and ξ having the uniform dis-

tribution on [0; 2] (see tables 6, 7) and for the case when customer's length ξ is
proportional to his capacity ζ (having the same distribution) with coe�cient

c = 1 (see tables 8 and 9).

4. Conclusion

In this paper we have analyzed the in�uence of service discipline on the �rst

moment of total customers capacity in single-server queueing system with

unlimited system capacity and on the loss characteristics for the system with

limited total capacity. It was shown that

1) the discipline FIFO is better than EPS from the viewpoint of capacity

occupied by customers in the system and loss characteristics;

2) the loss characteristics P and Q depend on service discipline and char-

acter of dependence between customer's capacity and his length.

However, the last dependence is inessential for rather small system capac-

ities and small ρ; more precisely, in this case the in�uence of ζ and ξ depen-

dence is inessential for loss characteristics calculation. Therefore, in practice

we often need not to pay attention on this dependence and can use analytical

methods to calculate the loss probability for queueing systems with customer

length not depending on his capacity.
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Appendix

Table 1: Probabilities Q for ρ = 0.2

V QFIFO
sim QESP

sim

0.0 1.0000 1.0000

1.0 0.7526 0.7526

2.0 0.4454 0.4451

2.5 0.3290 0.3289

3.0 0.2402 0.2401

4.0 0.1230 0.1231

5.0 0.0610 0.0607

6.0 0.0293 0.0295

8.0 0.0067 0.0069

10.0 0.0014 0.0014

12.0 0.0003 0.0003
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Table 2: Probabilities Q for ρ = 0.8

V QFIFO
sim QEPS

sim

0.0 1.0000 1.0000

2.0 0.5774 0.5771

4.0 0.3083 0.3077

6.0 0.1776 0.1772

8.0 0.1085 0.1085

10.0 0.0688 0.0678

15.0 0.0233 0.0232

20.0 0.0085 0.0085

25.0 0.0031 0.0031

30.0 0.0012 0.0011

35.0 0.0004 0.0004

Table 3: Probabilities P and Q for ρ = 0.2

V PFIFO
sim QFIFO

sim PEPS
an QEPS

sim

0.0 1.0000 1.0000 1.0000 1.0000

1.0 0.3846 0.7454 0.3847 0.7454

2.0 0.1711 0.4445 0.1718 0.4455

3.0 0.0850 0.2531 0.0866 0.2549

4.0 0.0446 0.1419 0.0467 0.1448

5.0 0.0240 0.0790 0.0260 0.0824

6.0 0.0129 0.0435 0.0147 0.0469

8.0 0.0038 0.0130 0.0048 0.0153

10.0 0.0011 0.0038 0.0016 0.0051

12.0 0.0003 0.0011 0.0005 0.0017

15.0 0.0001 0.0002 0.0001 0.0003
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Table 4: Probabilities P and Q for ρ = 0.8

V PFIFO
sim QFIFO

sim PEPS
an QEPS

sim

0.0 1.0000 1.0000 1.0000 1.0000

2.0 0.2570 0.5371 0.2641 0.5424

4.0 0.1272 0.2851 0.1475 0.3111

6.0 0.0715 0.1642 0.0964 0.2036

8.0 0.0429 0.0997 0.0676 0.1426

10.0 0.0267 0.0624 0.0493 0.1042

15.0 0.0090 0.0212 0.0248 0.0525

20.0 0.0032 0.0076 0.0135 0.0285

25.0 0.0012 0.0028 0.0076 0.0160

30.0 0.0004 0.0010 0.0044 0.0092

35.0 0.0002 0.0004 0.0025 0.0054

40.0 0.0001 0.0002 0.0015 0.0031

50.0 0.0000 0.0000 0.0005 0.0011

Table 5: Probabilities P and Q for ρ = 1.0

V PFIFO
sim QFIFO

sim PEPS
an QEPS

sim

0.0 1.0000 1.0000 1.0000 1.0000

2.0 0.2803 0.5616 0.2902 0.5687

4.0 0.1550 0.3303 0.1819 0.3624

5.0 0.1229 0.2654 0.1539 0.3070

10.0 0.0551 0.1220 0.0870 0.1736

15.0 0.0344 0.0764 0.0606 0.1212

20.0 0.0256 0.0572 0.0465 0.0929

30.0 0.0132 0.0290 0.0317 0.0635

35.0 0.0105 0.0246 0.0248 0.0548

40.0 0.0076 0.0217 0.0241 0.0481

50.0 0.0070 0.0164 0.0195 0.0389

60.0 0.0065 0.0144 0.0163 0.0325

70.0 0.0056 0.0120 0.0140 0.0279

80.0 0.0049 0.0104 0.0122 0.0250
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Table 6: Probabilities P and Q for ρ = 0, 2 when ζ and ξ are independent

V PFIFO
sim QFIFO

sim PEPS
an QEPS

sim

0.0 1.0000 1.0000 1.0000 1.0000

0.5 0.7565 0.9397 0.7565 0.9397

1.0 0.5240 0.7658 0.5241 0.7658

1.5 0.3031 0.4904 0.3039 0.4908

2.0 0.0923 0.1226 0.0938 0.1240

2.5 0.0577 0.0846 0.0603 0.0873

3.0 0.0314 0.0492 0.0344 0.0528

4.0 0.0051 0.0076 0.0079 0.0113

5.0 0.0012 0.0018 0.0023 0.0034

6.0 0.0002 0.0003 0.0006 0.0009

7.0 0.0000 0.0001 0.0002 0.0002

Table 7: Probabilities P and Q for ρ = 0, 8 when ζ and ξ are independent

V PFIFO
sim QFIFO

sim PEPS
an QEPS

sim

0.0 1.0000 1.0000 1.0000 1.0000

1.0 0.5854 0.8065 0.5878 0.8075

2.0 0.3008 0.3944 0.3111 0.4016

3.0 0.1857 0.2622 0.2083 0.2854

4.0 0.1153 0.1605 0.1435 0.1936

5.0 0.0759 0.1068 0.1044 0.1418

6.0 0.0515 0.0723 0.0779 0.1057

8.0 0.0250 0.0352 0.0455 0.0618

10.0 0.0127 0.0178 0.0280 0.0380

15.0 0.0024 0.0034 0.0090 0.0122

20.0 0.0005 0.0007 0.0030 0.0040

25.0 0.0001 0.0001 0.0010 0.0014

30.0 0.0000 0.0000 0.0003 0.0004

35.0 0.0001 0.0001
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Table 8: Probabilities P and Q for ρ = 0, 2 when ξ is proportional to ζ

V PFIFO
sim QFIFO

sim PEPS
an QEPS

sim

0.0 1.0000 1.0000 1.0000 1.0000

1.0 0.5158 0.7597 0.5158 0.7596

2.0 0.1141 0.1423 0.1150 0.1431

3.0 0.0438 0.0686 0.0484 0.0740

4.0 0.0079 0.0112 0.0138 0.0192

5.0 0.0020 0.0031 0.0049 0.0072

6.0 0.0003 0.0005 0.0015 0.0022

7.0 0.0001 0.0001 0.0005 0.0007

8.0 0.0000 0.0000 0.0002 0.0002

9.0 0.0001 0.0001

Table 9: Probabilities P and Q for ρ = 0, 8 when ξ is proportional to ζ

V PFIFO
sim QFIFO

sim PEPS
an QEPS

sim

0.0 1.0000 1.0000 1.0000 1.0000

0.5 0.7582 0.9400 0.7582 0.9400

1.0 0.5570 0.7855 0.5573 0.7857

2.0 0.3179 0.3963 0.3252 0.4023

3.0 0.1832 0.2621 0.2142 0.2956

4.0 0.1109 0.1536 0.1558 0.2084

5.0 0.0703 0.0997 0.1168 0.1578

6.0 0.0464 0.0658 0.0901 0.1221

8.0 0.0219 0.0310 0.0569 0.0770

10.0 0.0110 0.0155 0.0376 0.0508

15.0 0.0021 0.0030 0.0148 0.0200

20.0 0.0004 0.0006 0.0062 0.0084

25.0 0.0001 0.0001 0.0027 0.0036

30.0 0.0000 0.0000 0.0011 0.0015

35.0 0.0005 0.0007

40.0 0.0002 0.0003

45.0 0.0001 0.0001


